

Welcome to MTpy’s documentation!

Contents:

	Package Core
	Module z

	Module TS

	Module MT

	Module EDI

	Module EDI_Collection

	Module XML

	Module JFile

	Package Analysis
	Module Distortion

	Module Geometry

	Module Phase Tensor

	Module Static Shift

	Module Z Invariants

	Package Modeling
	Module ModEM

	Module Occam 1D

	Module Occam 2D

	Module Winglink

	Module WS3DINV

	Package Imaging
	Penetration Depth

	Module Plot Phase Tensor Maps

	Module PlotPhaseTensorPseudoSection

	Module MTPlot

	Plot MT Response

	Visualization of Models

	Package utils
	Shapefile Creator

	GIS Tools

	Other Tools

Indices and tables

	Index

	Module Index

	Search Page

Package Core

Module z

	
exception mtpy.core.z.MT_Z_Error

	

	
class mtpy.core.z.ResPhase(z_array=None, z_err_array=None, freq=None, **kwargs)

	resistivity and phase container

	Attributes

	
	phase

	

	phase_det

	

	phase_det_err

	

	phase_err

	

	phase_err_xx

	

	phase_err_xy

	

	phase_err_yx

	

	phase_err_yy

	

	phase_xx

	

	phase_xy

	

	phase_yx

	

	phase_yy

	

	res_det

	

	res_det_err

	

	res_err_xx

	

	res_err_xy

	

	res_err_yx

	

	res_err_yy

	

	res_xx

	

	res_xy

	

	res_yx

	

	res_yy

	

	resistivity

	

	resistivity_err

	

Methods

	compute_resistivity_phase(self[, z_array, …])

	compute resistivity and phase from z and z_err

	set_res_phase(self, res_array, phase_array, freq)

	Set values for resistivity (res - in Ohm m) and phase (phase - in degrees), including error propagation.

	
compute_resistivity_phase(self, z_array=None, z_err_array=None, freq=None)

	compute resistivity and phase from z and z_err

	
set_res_phase(self, res_array, phase_array, freq, res_err_array=None, phase_err_array=None)

	Set values for resistivity (res - in Ohm m) and phase
(phase - in degrees), including error propagation.

	Parameters

	
	res_array (np.ndarray(num_freq, 2, 2)) – resistivity array in Ohm-m

	phase_array (np.ndarray(num_freq, 2, 2)) – phase array in degrees

	freq (np.ndarray(num_freq)) – frequency array in Hz

	res_err_array (np.ndarray(num_freq, 2, 2)) – resistivity error array in Ohm-m

	phase_err_array (np.ndarray(num_freq, 2, 2)) – phase error array in degrees

	
class mtpy.core.z.Tipper(tipper_array=None, tipper_err_array=None, freq=None)

	Tipper class –> generates a Tipper-object.

Errors are given as standard deviations (sqrt(VAR))

	Parameters

	
	tipper_array (np.ndarray((nf, 1, 2), dtype='complex')) – tipper array in the shape of [Tx, Ty]
default is None

	tipper_err_array (np.ndarray((nf, 1, 2))) – array of estimated tipper errors
in the shape of [Tx, Ty].
Must be the same shape as tipper_array.
default is None

	freq (np.ndarray(nf)) – array of frequencies corresponding to the tipper elements.
Must be same length as tipper_array.
default is None

	Attributes

	Description

	freq

	array of frequencies corresponding to elements of z

	rotation_angle

	angle of which data is rotated by

	tipper

	tipper array

	tipper_err

	tipper error array

	Methods

	Description

	mag_direction

	computes magnitude and direction of real and imaginary
induction arrows.

	amp_phase

	computes amplitude and phase of Tx and Ty.

	rotate

	rotates the data by the given angle

	Attributes

	
	amplitude

	

	amplitude_err

	

	angle_err

	

	angle_imag

	

	angle_real

	

	freq

	

	mag_err

	

	mag_imag

	

	mag_real

	

	phase

	

	phase_err

	

	tipper

	

	tipper_err

	

Methods

	compute_amp_phase(self)

	Sets attributes:

	compute_mag_direction(self)

	computes the magnitude and direction of the real and imaginary induction vectors.

	rotate(self, alpha)

	Rotate Tipper array.

	set_amp_phase(self, r_array, phi_array)

	Set values for amplitude(r) and argument (phi - in degrees).

	set_mag_direction(self, mag_real, ang_real, …)

	computes the tipper from the magnitude and direction of the real and imaginary components.

	
compute_amp_phase(self)

	
	Sets attributes:

	
	amplitude

	phase

	amplitude_err

	phase_err

values for resistivity are in in Ohm m and phase in degrees.

	
compute_mag_direction(self)

	computes the magnitude and direction of the real and imaginary
induction vectors.

	
rotate(self, alpha)

	Rotate Tipper array.

Rotation angle must be given in degrees. All angles are referenced
to geographic North=0, positive in clockwise direction.
(Mathematically negative!)

In non-rotated state, ‘X’ refs to North and ‘Y’ to East direction.

	Updates the attributes:

	
	tipper

	tipper_err

	rotation_angle

	
set_amp_phase(self, r_array, phi_array)

	Set values for amplitude(r) and argument (phi - in degrees).

	Updates the attributes:

	
	tipper

	tipper_err

	
set_mag_direction(self, mag_real, ang_real, mag_imag, ang_imag)

	computes the tipper from the magnitude and direction of the real
and imaginary components.

Updates tipper

No error propagation yet

	
class mtpy.core.z.Z(z_array=None, z_err_array=None, freq=None)

	Z class - generates an impedance tensor (Z) object.

Z is a complex array of the form (n_freq, 2, 2),
with indices in the following order:

	Zxx: (0,0)

	Zxy: (0,1)

	Zyx: (1,0)

	Zyy: (1,1)

All errors are given as standard deviations (sqrt(VAR))

	Parameters

	
	z_array (numpy.ndarray(n_freq, 2, 2)) – array containing complex impedance values

	z_err_array (numpy.ndarray(n_freq, 2, 2)) – array containing error values (standard deviation)
of impedance tensor elements

	freq (np.ndarray(n_freq)) – array of frequency values corresponding to impedance tensor
elements.

	Attributes

	Description

	freq

	array of frequencies corresponding to elements of z

	rotation_angle

	angle of which data is rotated by

	z

	impedance tensor

	z_err

	estimated errors of impedance tensor

	resistivity

	apparent resisitivity estimated from z in Ohm-m

	resistivity_err

	apparent resisitivity error

	phase

	impedance phase (deg)

	phase_err

	error in impedance phase

	Methods

	Description

	det

	calculates determinant of z with errors

	invariants

	calculates the invariants of z

	inverse

	calculates the inverse of z

	remove_distortion

	removes distortion given a distortion matrix

	remove_ss

	removes static shift by assumin Z = S * Z_0

	norm

	calculates the norm of Z

	only1d

	zeros diagonal components and computes
the absolute valued mean of the off-diagonal
components.

	only2d

	zeros diagonal components

	res_phase

	computes resistivity and phase

	rotate

	rotates z positive clockwise, angle assumes
North is 0.

	set_res_phase

	recalculates z and z_err, needs attribute freq

	skew

	calculates the invariant skew (off diagonal trace)

	trace

	calculates the trace of z

	Example

	>>> import mtpy.core.z as mtz
>>> import numpy as np
>>> z_test = np.array([[0+0j, 1+1j], [-1-1j, 0+0j]])
>>> z_object = mtz.Z(z_array=z_test, freq=[1])
>>> z_object.rotate(45)
>>> z_object.resistivity

	Attributes

	
	det

	Return the determinant of Z

	det_err

	Return the determinant of Z error

	freq

	Frequencies for each impedance tensor element

	invariants

	Return a dictionary of Z-invariants.

	inverse

	Return the inverse of Z.

	norm

	Return the 2-/Frobenius-norm of Z

	norm_err

	Return the 2-/Frobenius-norm of Z error

	only_1d

	Return Z in 1D form.

	only_2d

	Return Z in 2D form.

	phase

	

	phase_det

	

	phase_det_err

	

	phase_err

	

	phase_err_xx

	

	phase_err_xy

	

	phase_err_yx

	

	phase_err_yy

	

	phase_xx

	

	phase_xy

	

	phase_yx

	

	phase_yy

	

	res_det

	

	res_det_err

	

	res_err_xx

	

	res_err_xy

	

	res_err_yx

	

	res_err_yy

	

	res_xx

	

	res_xy

	

	res_yx

	

	res_yy

	

	resistivity

	

	resistivity_err

	

	skew

	Returns the skew of Z as defined by Z[0, 1] + Z[1, 0]

	skew_err

	Returns the skew error of Z as defined by Z_err[0, 1] + Z_err[1, 0]

	trace

	Return the trace of Z

	trace_err

	Return the trace of Z

	z

	Impedance tensor

	z_err

	

Methods

	compute_resistivity_phase(self[, z_array, …])

	compute resistivity and phase from z and z_err

	remove_distortion(self, distortion_tensor[, …])

	Remove distortion D form an observed impedance tensor Z to obtain the uperturbed “correct” Z0: Z = D * Z0

	remove_ss(self[, reduce_res_factor_x, …])

	Remove the static shift by providing the respective correction factors for the resistivity in the x and y components.

	rotate(self, alpha)

	Rotate Z array by angle alpha.

	set_res_phase(self, res_array, phase_array, freq)

	Set values for resistivity (res - in Ohm m) and phase (phase - in degrees), including error propagation.

	
det

	Return the determinant of Z

	Returns

	det_Z

	Return type

	np.ndarray(nfreq)

	
det_err

	Return the determinant of Z error

	Returns

	det_Z_err

	Return type

	np.ndarray(nfreq)

	
freq

	Frequencies for each impedance tensor element

Units are Hz.

	
invariants

	Return a dictionary of Z-invariants.

	
inverse

	Return the inverse of Z.

(no error propagtaion included yet)

	
norm

	Return the 2-/Frobenius-norm of Z

	Returns

	norm

	Return type

	np.ndarray(nfreq)

	
norm_err

	Return the 2-/Frobenius-norm of Z error

	Returns

	norm_err

	Return type

	np.ndarray(nfreq)

	
only_1d

	Return Z in 1D form.

If Z is not 1D per se, the diagonal elements are set to zero,
the off-diagonal elements keep their signs, but their absolute
is set to the mean of the original Z off-diagonal absolutes.

	
only_2d

	Return Z in 2D form.

If Z is not 2D per se, the diagonal elements are set to zero.

	
remove_distortion(self, distortion_tensor, distortion_err_tensor=None)

	Remove distortion D form an observed impedance tensor Z to obtain
the uperturbed “correct” Z0:
Z = D * Z0

Propagation of errors/uncertainties included

	Parameters

	
	distortion_tensor (np.ndarray(2, 2, dtype=real)) – real distortion tensor as a 2x2

	distortion_err_tensor – default is None

	Return type

	np.ndarray(2, 2, dtype=’real’)

	returns

	impedance tensor with distorion removed

	Return type

	np.ndarray(num_freq, 2, 2, dtype=’complex’)

	returns

	impedance tensor error after distortion is removed

	Return type

	np.ndarray(num_freq, 2, 2, dtype=’complex’)

	Example

	>>> import mtpy.core.z as mtz
>>> distortion = np.array([[1.2, .5],[.35, 2.1]])
>>> d, new_z, new_z_err = z_obj.remove_distortion(distortion)

	
remove_ss(self, reduce_res_factor_x=1.0, reduce_res_factor_y=1.0)

	Remove the static shift by providing the respective correction factors
for the resistivity in the x and y components.
(Factors can be determined by using the “Analysis” module for the
impedance tensor)

Assume the original observed tensor Z is built by a static shift S
and an unperturbated “correct” Z0 :

	Z = S * Z0

	therefore the correct Z will be :

	
	Z0 = S^(-1) * Z

	Parameters

	
	reduce_res_factor_x (float or iterable list or array) – static shift factor to be applied to x
components (ie z[:, 0, :]). This is
assumed to be in resistivity scale

	reduce_res_factor_y (float or iterable list or array) – static shift factor to be applied to y
components (ie z[:, 1, :]). This is
assumed to be in resistivity scale

	Returns

	static shift matrix,

	Return type

	np.ndarray ((2, 2))

	Returns

	corrected Z

	Return type

	mtpy.core.z.Z

Note

The factors are in resistivity scale, so the
entries of the matrix “S” need to be given by their
square-roots!

	
rotate(self, alpha)

	Rotate Z array by angle alpha.

Rotation angle must be given in degrees. All angles are referenced
to geographic North, positive in clockwise direction.
(Mathematically negative!)

In non-rotated state, X refs to North and Y to East direction.

	Updates the attributes

	
	z

	z_err

	zrot

	resistivity

	phase

	resistivity_err

	phase_err

	
skew

	Returns the skew of Z as defined by Z[0, 1] + Z[1, 0]

Note

This is not the MT skew, but simply the linear algebra skew

	Returns

	skew

	Return type

	np.ndarray(nfreq, 2, 2)

	
skew_err

	Returns the skew error of Z as defined by Z_err[0, 1] + Z_err[1, 0]

Note

This is not the MT skew, but simply the linear algebra skew

	Returns

	skew_err

	Return type

	np.ndarray(nfreq, 2, 2)

	
trace

	Return the trace of Z

	Returns

	Trace(z)

	Return type

	np.ndarray(nfreq, 2, 2)

	
trace_err

	Return the trace of Z

	Returns

	Trace(z)

	Return type

	np.ndarray(nfreq, 2, 2)

	
z

	Impedance tensor

np.ndarray(nfreq, 2, 2)

	
mtpy.core.z.correct4sensor_orientation(Z_prime, Bx=0, By=90, Ex=0, Ey=90, Z_prime_error=None)

	Correct a Z-array for wrong orientation of the sensors.

	Assume, E’ is measured by sensors orientated with the angles

	E’x: a
E’y: b

	Assume, B’ is measured by sensors orientated with the angles

	B’x: c
B’y: d

	With those data, one obtained the impedance tensor Z’:

	E’ = Z’ * B’

	Now we define change-of-basis matrices T,U so that

	E = T * E’
B = U * B’

=> T contains the expression of the E’-basis in terms of E
(the standard basis)
and U contains the expression of the B’-basis in terms of B
(the standard basis)
The respective expressions for E’x-basis vector and E’y-basis
vector are the columns of T.
The respective expressions for B’x-basis vector and B’y-basis
vector are the columns of U.

We obtain the impedance tensor in default coordinates as:

	E’ = Z’ * B’ => T^(-1) * E = Z’ * U^(-1) * B

	=> E = T * Z’ * U^(-1) * B
=> Z = T * Z’ * U^(-1)

	Parameters

	
	Z_prime – impedance tensor to be adjusted

	Bx (float (angle in degrees)) – orientation of Bx relative to geographic north (0)
default is 0

	By –

	Ex (float (angle in degrees)) – orientation of Ex relative to geographic north (0)
default is 0

	Ey (float (angle in degrees)) – orientation of Ey relative to geographic north (0)
default is 90

	Z_prime_error (np.ndarray(Z_prime.shape)) – impedance tensor error (std)
default is None

	Dtype Z_prime

	np.ndarray(num_freq, 2, 2, dtype=’complex’)

	Returns

	adjusted impedance tensor

	Return type

	np.ndarray(Z_prime.shape, dtype=’complex’)

	Returns

	impedance tensor standard deviation in
default orientation

	Return type

	np.ndarray(Z_prime.shape, dtype=’real’)

Module TS

	
class mtpy.core.ts.MT_TS(**kwargs)

	MT time series object that will read/write data in different formats
including hdf5, txt, miniseed.

The foundations are based on Pandas Python package.

The data are store in the variable ts, which is a pandas dataframe with
the data in the column ‘data’. This way the data can be indexed as a
numpy array:

>>> MT_TS.ts['data'][0:256]

or

>>> MT_TS.ts.data[0:256]

Also, the data can be indexed by time (note needs to be exact time):

>>> MT_TS.ts['2017-05-04 12:32:00.0078125':'2017-05-05 12:35:00]

Input ts as a numpy.ndarray or Pandas DataFrame

	Metadata

	Description

	azimuth

	clockwise angle from coordinate system N (deg)

	calibration_fn

	file name for calibration data

	component

	component name [‘ex’ | ‘ey’ | ‘hx’ | ‘hy’ | ‘hz’]

	coordinate_system

	[geographic | geomagnetic]

	datum

	datum of geographic location ex. WGS84

	declination

	geomagnetic declination (deg)

	dipole_length

	length of dipole (m)

	data_logger

	data logger type

	instrument_id

	ID number of instrument for calibration

	lat

	latitude of station in decimal degrees

	lon

	longitude of station in decimal degrees

	n_samples

	number of samples in time series

	sampling_rate

	sampling rate in samples/second

	start_time_epoch_sec

	start time in epoch seconds

	start_time_utc

	start time in UTC

	station

	station name

	units

	units of time series

Note

Currently only supports hdf5 and text files

	Method

	Description

	read_hdf5

	read an hdf5 file

	write_hdf5

	write an hdf5 file

	write_ascii_file

	write an ascii file

	read_ascii_file

	read an ascii file

	Example

	>>> import mtpy.core.ts as ts
>>> import numpy as np
>>> mt_ts = ts.MT_TS()
>>> mt_ts.ts = np.random.randn(1024)
>>> mt_ts.station = 'test'
>>> mt_ts.lon = 30.00
>>> mt_ts.lat = -122.00
>>> mt_ts.component = 'HX'
>>> mt_ts.units = 'counts'
>>> mt_ts.write_hdf5(r"/home/test.h5")

	Attributes

	
	elev

	elevation in elevation units

	lat

	Latitude in decimal degrees

	lon

	Longitude in decimal degrees

	n_samples

	number of samples

	sampling_rate

	sampling rate in samples/second

	start_time_epoch_sec

	start time in epoch seconds

	start_time_utc

	start time in UTC given in time format

	ts

	

Methods

	apply_addaptive_notch_filter(self[, …])

	apply notch filter to the data that finds the peak around each frequency.

	decimate(self[, dec_factor])

	decimate the data by using scipy.signal.decimate

	low_pass_filter(self[, low_pass_freq, …])

	low pass the data

	plot_spectra(self[, spectra_type])

	Plot spectra using the spectral type

	read_ascii(self, fn_ascii)

	Read an ascii format file with metadata

	read_ascii_header(self, fn_ascii)

	Read an ascii metadata

	read_hdf5(self, fn_hdf5[, …])

	Read an hdf5 file with metadata using Pandas.

	write_ascii_file(self, fn_ascii[, chunk_size])

	Write an ascii format file with metadata

	write_hdf5(self, fn_hdf5[, …])

	Write an hdf5 file with metadata using pandas to write the file.

	
apply_addaptive_notch_filter(self, notches=None, notch_radius=0.5, freq_rad=0.5, rp=0.1)

	apply notch filter to the data that finds the peak around each
frequency.

see mtpy.processing.filter.adaptive_notch_filter

	Parameters

	notch_dict (dictionary) – dictionary of filter parameters.
if an empty dictionary is input the filter looks
for 60 Hz and harmonics to filter out.

	
decimate(self, dec_factor=1)

	decimate the data by using scipy.signal.decimate

	Parameters

	dec_factor (int) – decimation factor

	refills ts.data with decimated data and replaces sampling_rate

	
elev

	elevation in elevation units

	
lat

	Latitude in decimal degrees

	
lon

	Longitude in decimal degrees

	
low_pass_filter(self, low_pass_freq=15, cutoff_freq=55)

	low pass the data

	Parameters

	
	low_pass_freq (float) – low pass corner in Hz

	cutoff_freq (float) – cut off frequency in Hz

	filters ts.data

	
n_samples

	number of samples

	
plot_spectra(self, spectra_type='welch', **kwargs)

	Plot spectra using the spectral type

Note

Only spectral type supported is welch

	Parameters

	spectra_type – [‘welch’]

	Example

	>>> ts_obj = mtts.MT_TS()
>>> ts_obj.read_hdf5(r"/home/MT/mt01.h5")
>>> ts_obj.plot_spectra()

	
read_ascii(self, fn_ascii)

	Read an ascii format file with metadata

	Parameters

	fn_ascii (string) – full path to ascii file

	Example

	>>> ts_obj.read_ascii(r"/home/ts/mt01.EX")

	
read_ascii_header(self, fn_ascii)

	Read an ascii metadata

	Parameters

	fn_ascii (string) – full path to ascii file

	Example

	>>> ts_obj.read_ascii_header(r"/home/ts/mt01.EX")

	
read_hdf5(self, fn_hdf5, compression_level=0, compression_lib='blosc')

	Read an hdf5 file with metadata using Pandas.

	Parameters

	
	fn_hdf5 (string) – full path to hdf5 file, has .h5 extension

	compression_level (int) – compression level of file [0-9]

	compression_lib (string) – compression library default is blosc

	Returns

	fn_hdf5

See also

Pandas.HDf5Store

	
sampling_rate

	sampling rate in samples/second

	
start_time_epoch_sec

	start time in epoch seconds

	
start_time_utc

	start time in UTC given in time format

	
write_ascii_file(self, fn_ascii, chunk_size=4096)

	Write an ascii format file with metadata

	Parameters

	
	fn_ascii (string) – full path to ascii file

	chunk_size (int) – read in file by chunks for efficiency

	Example

	>>> ts_obj.write_ascii_file(r"/home/ts/mt01.EX")

	
write_hdf5(self, fn_hdf5, compression_level=0, compression_lib='blosc')

	Write an hdf5 file with metadata using pandas to write the file.

	Parameters

	
	fn_hdf5 (string) – full path to hdf5 file, has .h5 extension

	compression_level (int) – compression level of file [0-9]

	compression_lib (string) – compression library default is blosc

	Returns

	fn_hdf5

See also

Pandas.HDf5Store

	
exception mtpy.core.ts.MT_TS_Error

	

	
class mtpy.core.ts.Spectra(**kwargs)

	compute spectra of time series

Methods

	compute_spectra(self, data, spectra_type, …)

	compute spectra according to input type

	welch_method(self, data[, plot])

	Compute the spectra using the Welch method, which is an average spectra of the data.

	
compute_spectra(self, data, spectra_type, **kwargs)

	compute spectra according to input type

	
welch_method(self, data, plot=True, **kwargs)

	Compute the spectra using the Welch method, which is an average
spectra of the data. Computes short time window of length nperseg and
averages them to reduce noise.

Module MT

	
class mtpy.core.mt.Citation(**kwargs)

	Information for a citation.

Holds the following information:

	Attributes

	Type

	Explanation

	author

	string

	Author names

	title

	string

	Title of article, or publication

	journal

	string

	Name of journal

	doi

	string

	DOI number (doi:10.110/sf454)

	year

	int

	year published

More attributes can be added by inputing a key word dictionary

>>> Citation(**{'volume':56, 'pages':'234--214'})

	
class mtpy.core.mt.Copyright(**kwargs)

	Information of copyright, mainly about how someone else can use these
data. Be sure to read over the conditions_of_use.

Holds the following information:

	Attributes

	Type

	Explanation

	citation

	Citation

	citation of published work using these data

	conditions_of_use

	string

	conditions of use of these data

	release_status

	string

	release status [open | public | proprietary]

More attributes can be added by inputing a key word dictionary

>>> Copyright(**{'owner':'University of MT', 'contact':'Cagniard'})

	
class mtpy.core.mt.DataQuality(**kwargs)

	Information on data quality.

Holds the following information:

	Attributes

	Type

	Explanation

	comments

	string

	comments on data quality

	good_from_period

	float

	minimum period data are good

	good_to_period

	float

	maximum period data are good

	rating

	int

	[1-5]; 1 = poor, 5 = excellent

	warrning_comments

	string

	any comments on warnings in the data

	warnings_flag

	int

	[0-#of warnings]

More attributes can be added by inputing a key word dictionary

>>>DataQuality(**{‘time_series_comments’:’Periodic Noise’})

	
class mtpy.core.mt.FieldNotes(**kwargs)

	Field note information.

Holds the following information:

	Attributes

	Type

	Explanation

	data_quality

	DataQuality

	notes on data quality

	electrode

	Instrument

	type of electrode used

	data_logger

	Instrument

	type of data logger

	magnetometer

	Instrument

	type of magnetotmeter

More attributes can be added by inputing a key word dictionary

>>> FieldNotes(**{'electrode_ex':'Ag-AgCl 213', 'magnetometer_hx':'102'})

	
class mtpy.core.mt.Instrument(**kwargs)

	Information on an instrument that was used.

Holds the following information:

	Attributes

	Type

	Explanation

	id

	string

	serial number or id number of data logger

	manufacturer

	string

	company whom makes the instrument

	type

	string

	Broadband, long period, something else

More attributes can be added by inputing a key word dictionary

>>> Instrument(**{'ports':'5', 'gps':'time_stamped'})

	
class mtpy.core.mt.Location(**kwargs)

	location details

	Attributes

	
	easting

	

	elevation

	

	latitude

	

	longitude

	

	northing

	

Methods

	project_location2ll(self)

	project location coordinates into meters given the reference ellipsoid, for now that is constrained to WGS84

	project_location2utm(self)

	project location coordinates into meters given the reference ellipsoid, for now that is constrained to WGS84

	
project_location2ll(self)

	project location coordinates into meters given the reference ellipsoid,
for now that is constrained to WGS84

Returns East, North, Zone

	
project_location2utm(self)

	project location coordinates into meters given the reference ellipsoid,
for now that is constrained to WGS84

Returns East, North, Zone

	
class mtpy.core.mt.MT(fn=None, **kwargs)

	Basic MT container to hold all information necessary for a MT station
including the following parameters.

	Site –> information on site details (lat, lon, name, etc)

	FieldNotes –> information on instruments, setup, etc.

	Copyright –> information on how the data can be used and citations

	Provenance –> where the data come from and how they are stored

	Processing –> how the data were processed.

The most used attributes are made available from MT, namely the following.

	Attribute

	Description

	station

	station name

	lat

	station latitude in decimal degrees

	lon

	station longitude in decimal degrees

	elev

	station elevation in meters

	Z

	mtpy.core.z.Z object for impedance tensor

	Tipper

	mtpy.core.z.Tipper object for tipper

	pt

	mtpy.analysis.pt.PhaseTensor for phase tensor

	east

	station location in UTM coordinates assuming WGS-84

	north

	station location in UTM coordinates assuming WGS-84

	utm_zone

	zone of UTM coordinates assuming WGS-84

	rotation_angle

	rotation angle of the data

	fn

	absolute path to the data file

Other information is contained with in the different class attributes. For
instance survey name is in MT.Site.survey

Note

	The best way to see what all the information is and where it is
contained would be to write out a configuration file

>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT()
>>> mt_obj.write_cfg_file(r"/home/mt/generic.cfg")

	Currently EDI, XML, and j file are supported to read in information,
and can write out EDI and XML formats. Will be extending to j and
Egberts Z format.

	Methods

	Description

	read_mt_file

	read in a MT file [EDI | XML | j]

	write_mt_file

	write a MT file [EDI | XML]

	read_cfg_file

	read a configuration file

	write_cfg_file

	write a configuration file

	remove_distortion

	remove distortion following Bibby et al. [2005]

	remove_static_shift

	Shifts apparent resistivity curves up or down

	interpolate

	interpolates Z and T onto specified frequency array.

Examples

	Read from an .edi File

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT(r"/home/edi_files/s01.edi")

	Remove Distortion

	>>> import mtpy.core.mt as mt
>>> mt1 = mt.MT(fn=r"/home/mt/edi_files/mt01.edi")
>>> D, new_z = mt1.remove_distortion()
>>> mt1.write_mt_file(new_fn=r"/home/mt/edi_files/mt01_dr.edi", >>> new_Z=new_z)

	Remove Static Shift

	>>> new_z_obj = mt_obj.remove_static_shift(ss_x=.78, ss_y=1.1)
>>> # write a new edi file
>>> mt_obj.write_mt_file(new_fn=r"/home/edi_files/s01_ss.edi",
>>> new_Z=new_z)
>>> wrote file to: /home/edi_files/s01_ss.edi

	Interpolate

	>>> new_freq = np.logspace(-3, 3, num=24)
>>> new_z_obj, new_tipper_obj = mt_obj.interpolate(new_freq)
>>> mt_obj.write_mt_file(new_Z=new_z_obj, new_Tipper=new_tipper_obj)
>>> wrote file to: /home/edi_files/s01_RW.edi

	Attributes

	
	Tipper

	mtpy.core.z.Tipper object to hold tipper information

	Z

	mtpy.core.z.Z object to hole impedance tensor

	east

	easting (m)

	elev

	Elevation

	fn

	reference to original data file

	lat

	Latitude

	lon

	Longitude

	north

	northing (m)

	pt

	mtpy.analysis.pt.PhaseTensor object to hold phase tensor

	rotation_angle

	rotation angle in degrees from north

	station

	station name

	utm_zone

	utm zone

Methods

	interpolate(self, new_freq_array[, …])

	Interpolate the impedance tensor onto different frequencies

	plot_mt_response(self, **kwargs)

	Returns a mtpy.imaging.plotresponse.PlotResponse object

	read_cfg_file(self, cfg_fn)

	Read in a configuration file and populate attributes accordingly.

	read_mt_file(self, fn[, file_type])

	Read an MT response file.

	remove_distortion(self[, num_freq])

	remove distortion following Bibby et al.

	remove_static_shift(self[, ss_x, ss_y])

	Remove static shift from the apparent resistivity

	write_cfg_file(self, cfg_fn)

	Write a configuration file for the MT sections

	write_mt_file(self[, save_dir, fn_basename, …])

	Write an mt file, the supported file types are EDI and XML.

	
Tipper

	mtpy.core.z.Tipper object to hold tipper information

	
Z

	mtpy.core.z.Z object to hole impedance tensor

	
east

	easting (m)

	
elev

	Elevation

	
fn

	reference to original data file

	
interpolate(self, new_freq_array, interp_type='slinear', bounds_error=True, period_buffer=None)

	Interpolate the impedance tensor onto different frequencies

	Parameters

	new_freq_array (np.ndarray) – a 1-d array of frequencies to interpolate on
to. Must be with in the bounds of the existing
frequency range, anything outside and an error
will occur.

	Returns

	a new impedance object with the corresponding
frequencies and components.

	Return type

	mtpy.core.z.Z

	Returns

	a new tipper object with the corresponding
frequencies and components.

	Return type

	mtpy.core.z.Tipper

	Interpolate

	>>> import mtpy.core.mt as mt
>>> edi_fn = r"/home/edi_files/mt_01.edi"
>>> mt_obj = mt.MT(edi_fn)
>>> # create a new frequency range to interpolate onto
>>> new_freq = np.logspace(-3, 3, 24)
>>> new_z_object, new_tipper_obj = mt_obj.interpolate(new_freq)
>>> mt_obj.write_mt_file(new_fn=r"/home/edi_files/mt_01_interp.edi",
>>> ... new_Z_obj=new_z_object,
>>> ... new_Tipper_obj=new_tipper_object)

	
lat

	Latitude

	
lon

	Longitude

	
north

	northing (m)

	
plot_mt_response(self, **kwargs)

	Returns a mtpy.imaging.plotresponse.PlotResponse object

	Plot Response

	>>> mt_obj = mt.MT(edi_file)
>>> pr = mt.plot_mt_response()
>>> # if you need more info on plot_mt_response
>>> help(pr)

	
pt

	mtpy.analysis.pt.PhaseTensor object to hold phase tensor

	
read_cfg_file(self, cfg_fn)

	Read in a configuration file and populate attributes accordingly.

	The configuration file should be in the form:

	
Site.Location.latitude = 46.5

Site.Location.longitude = 122.7

Site.Location.datum = ‘WGS84’

Processing.Software.name = BIRRP

Processing.Software.version = 5.2.1

Provenance.Creator.name = L. Cagniard

Provenance.Submitter.name = I. Larionov

	Parameters

	cfg_fn (string) – full path to configuration file

Note

The best way to make a configuration file would be to save
a configuration file first from MT, then filling in the
fields.

	Make configuration file

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT()
>>> mt_obj.write_cfg_file(r"/mt/generic_config.cfg")

	Read in configuration file

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT()
>>> mt_obj.read_cfg_file(r"/home/mt/survey_config.cfg")

	
read_mt_file(self, fn, file_type=None)

	Read an MT response file.

Note

Currently only .edi, .xml, and .j files are supported

	Parameters

	
	fn (string) – full path to input file

	file_type (string) – [‘edi’ | ‘j’ | ‘xml’ | …]
if None, automatically detects file type by
the extension.

	Example

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT()
>>> mt_obj.read_mt_file(r"/home/mt/mt01.xml")

	
remove_distortion(self, num_freq=None)

	remove distortion following Bibby et al. [2005].

	Parameters

	num_freq (int) – number of frequencies to look for distortion from the
highest frequency

	Returns

	Distortion matrix

	Return type

	np.ndarray(2, 2, dtype=real)

	Returns

	Z with distortion removed

	Return type

	mtpy.core.z.Z

	Remove distortion and write new .edi file

	>>> import mtpy.core.mt as mt
>>> mt1 = mt.MT(fn=r"/home/mt/edi_files/mt01.edi")
>>> D, new_z = mt1.remove_distortion()
>>> mt1.write_mt_file(new_fn=r"/home/mt/edi_files/mt01_dr.edi", >>> new_Z=new_z)

	
remove_static_shift(self, ss_x=1.0, ss_y=1.0)

	Remove static shift from the apparent resistivity

Assume the original observed tensor Z is built by a static shift S
and an unperturbated “correct” Z0 :

	Z = S * Z0

	therefore the correct Z will be :

	
	Z0 = S^(-1) * Z

	Parameters

	
	ss_x (float) – correction factor for x component

	ss_y (float) – correction factor for y component

	Returns

	new Z object with static shift removed

	Return type

	mtpy.core.z.Z

Note

The factors are in resistivity scale, so the
entries of the matrix “S” need to be given by their
square-roots!

	Remove Static Shift

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT(r"/home/mt/mt01.edi")
>>> new_z_obj = mt.remove_static_shift(ss_x=.5, ss_y=1.2)
>>> mt_obj.write_mt_file(new_fn=r"/home/mt/mt01_ss.edi",
>>> ... new_Z_obj=new_z_obj)

	
rotation_angle

	rotation angle in degrees from north

	
station

	station name

	
utm_zone

	utm zone

	
write_cfg_file(self, cfg_fn)

	Write a configuration file for the MT sections

	Parameters

	cfg_fn (string) – full path to configuration file to write to

	Return cfg_fn

	full path to configuration file

	Rtype cfg_fn

	string

	Write configuration file

	>>> import mtpy.core.mt as mt
>>> mt_obj = mt.MT()
>>> mt_obj.read_mt_file(r"/home/mt/edi_files/mt01.edi")
>>> mt_obj.write_cfg_file(r"/home/mt/survey_config.cfg")

	
write_mt_file(self, save_dir=None, fn_basename=None, file_type='edi', new_Z_obj=None, new_Tipper_obj=None, longitude_format='LON', latlon_format='dms')

	Write an mt file, the supported file types are EDI and XML.

	Parameters

	
	save_dir (string) – full path save directory

	fn_basename (string) – name of file with or without extension

	file_type (string) – [‘edi’ | ‘xml’]

	new_Z_obj (mtpy.core.z.Z) – new Z object

	new_Tipper_obj (mtpy.core.z.Tipper) – new Tipper object

	longitude_format (string) – whether to write longitude as LON or LONG.
options are ‘LON’ or ‘LONG’, default ‘LON’

	latlon_format (string) – format of latitude and longitude in output edi,
degrees minutes seconds (‘dms’) or decimal
degrees (‘dd’)

	Returns

	full path to file

	Return type

	string

	Example

	>>> mt_obj.write_mt_file(file_type='xml')

	
exception mtpy.core.mt.MT_Error

	

	
class mtpy.core.mt.Person(**kwargs)

	Information for a person

Holds the following information:

	Attributes

	Type

	Explanation

	email

	string

	email of person

	name

	string

	name of person

	organization

	string

	name of person’s organization

	organization_url

	string

	organizations web address

More attributes can be added by inputing a key word dictionary

>>> Person(**{'phone':'650-888-6666'})

	
class mtpy.core.mt.Processing(**kwargs)

	Information for a processing

Holds the following information:

	Attributes

	Type

	Explanation

	email

	string

	email of person

	name

	string

	name of person

	organization

	string

	name of person’s organization

	organization_url

	string

	organizations web address

More attributes can be added by inputing a key word dictionary

>>> Person(**{'phone':'888-867-5309'})

	
class mtpy.core.mt.Provenance(**kwargs)

	Information of the file history, how it was made

Holds the following information:

	Attributes

	Type

	Explanation

	creation_time

	string

	creation time of file YYYY-MM-DD,hh:mm:ss

	creating_application

	string

	name of program creating the file

	creator

	Person

	person whom created the file

	submitter

	Person

	person whom is submitting file for
archiving

More attributes can be added by inputing a key word dictionary

>>> Provenance(**{'archive':'IRIS', 'reprocessed_by':'grad_student'})

	
class mtpy.core.mt.Site(**kwargs)

	Information on the site, including location, id, etc.

Holds the following information:

	Attributes

	Type

	Explanation

	aqcuired_by

	string

	name of company or person whom aqcuired the
data.

	id

	string

	station name

	Location

	object
Location

	Holds location information, lat, lon, elev
datum, easting, northing see Location class

	start_date

	string

	YYYY-MM-DD start date of measurement

	end_date

	string

	YYYY-MM-DD end date of measurement

	year_collected

	string

	year data collected

	survey

	string

	survey name

	project

	string

	project name

	run_list

	string

	list of measurment runs ex. [mt01a, mt01b]

More attributes can be added by inputing a key word dictionary

>>> Site(**{'state':'Nevada', 'Operator':'MTExperts'})

	Attributes

	
	year_collected

	

	
class mtpy.core.mt.Software(**kwargs)

	software

Module EDI

	
class mtpy.core.edi.DataSection(edi_fn=None, edi_lines=None)

	DataSection contains the small metadata block that describes which channel
is which. A typical block looks like:

>=MTSECT

 ex=1004.001
 ey=1005.001
 hx=1001.001
 hy=1002.001
 hz=1003.001
 nfreq=14
 sectid=par28ew
 nchan=None
 maxblks=None

	Parameters

	edi_fn (string) – full path to .edi file to read in.

	Rf5ecdd4b8de8-1

	Changes these values to change what is written to edi file

Methods

	get_data_sect(self)

	read in the data of the file, will detect if reading spectra or impedance.

	read_data_sect(self[, data_sect_list])

	read data section

	write_data_sect(self[, data_sect_list, …])

	write a data section

	
get_data_sect(self)

	read in the data of the file, will detect if reading spectra or
impedance.

	
read_data_sect(self, data_sect_list=None)

	read data section

	
write_data_sect(self, data_sect_list=None, over_dict=None)

	write a data section

	
class mtpy.core.edi.DefineMeasurement(edi_fn=None, edi_lines=None)

	DefineMeasurement class holds information about the measurement. This
includes how each channel was setup. The main block contains information
on the reference location for the station. This is a bit of an archaic
part and was meant for a multiple station .edi file. This section is also
important if you did any forward modeling with Winglink cause it only gives
the station location in this section. The other parts are how each channel
was collected. An example define measurement section looks like:

>=DEFINEMEAS

 MAXCHAN=7
 MAXRUN=999
 MAXMEAS=9999
 UNITS=M
 REFTYPE=CART
 REFLAT=-30:12:49.4693
 REFLONG=139:47:50.87
 REFELEV=0

>HMEAS ID=1001.001 CHTYPE=HX X=0.0 Y=0.0 Z=0.0 AZM=0.0
>HMEAS ID=1002.001 CHTYPE=HY X=0.0 Y=0.0 Z=0.0 AZM=90.0
>HMEAS ID=1003.001 CHTYPE=HZ X=0.0 Y=0.0 Z=0.0 AZM=0.0
>EMEAS ID=1004.001 CHTYPE=EX X=0.0 Y=0.0 Z=0.0 X2=0.0 Y2=0.0
>EMEAS ID=1005.001 CHTYPE=EY X=0.0 Y=0.0 Z=0.0 X2=0.0 Y2=0.0
>HMEAS ID=1006.001 CHTYPE=HX X=0.0 Y=0.0 Z=0.0 AZM=0.0
>HMEAS ID=1007.001 CHTYPE=HY X=0.0 Y=0.0 Z=0.0 AZM=90.0

	Parameters

	edi_fn (string) – full path to .edi file to read in.

	R5ea4377773dd-1

	Each channel with have its own define measurement and depending on
whether it is an E or H channel the metadata will be different.
the #### correspond to the channel number.

	R5ea4377773dd-2

	Internally everything is converted to decimal degrees. Output is
written as HH:MM:SS.ss so Winglink can read them in.

	R5ea4377773dd-3

	If you want to change what metadata is written into the .edi file
change the items in _header_keys. Default attributes are:

	maxchan

	maxrun

	maxmeas

	reflat

	reflon

	refelev

	reftype

	units

Methods

	get_measurement_dict(self)

	get a dictionary for the xmeas parts

	get_measurement_lists(self)

	get measurement list including measurement setup

	read_define_measurement(self[, measurement_list])

	read the define measurment section of the edi file

	write_define_measurement(self[, …])

	write the define measurement block as a list of strings

	
get_measurement_dict(self)

	get a dictionary for the xmeas parts

	
get_measurement_lists(self)

	get measurement list including measurement setup

	
read_define_measurement(self, measurement_list=None)

	read the define measurment section of the edi file

	should be a list with lines for:

	
	maxchan

	maxmeas

	maxrun

	refelev

	reflat

	reflon

	reftype

	units

	
	dictionaries for >XMEAS with keys:

	
	id

	chtype

	x

	y

	axm

-acqchn

	
write_define_measurement(self, measurement_list=None, longitude_format='LON', latlon_format='dd')

	write the define measurement block as a list of strings

	
class mtpy.core.edi.EMeasurement(**kwargs)

	EMeasurement contains metadata for an electric field measurement

	Attributes

	Description

	id

	Channel number

	chtype

	[EX | EY]

	x

	x (m) north from reference point (station) of one
electrode of the dipole

	y

	y (m) east from reference point (station) of one
electrode of the dipole

	x2

	x (m) north from reference point (station) of the
other electrode of the dipole

	y2

	y (m) north from reference point (station) of the
other electrode of the dipole

	acqchan

	name of the channel acquired usually same as chtype

	Fill Metadata

	>>> import mtpy.core.edi as mtedi
>>> e_dict = {'id': '1', 'chtype':'ex', 'x':0, 'y':0, 'x2':50, 'y2':50}
>>> e_dict['acqchn'] = 'ex'
>>> emeas = mtedi.EMeasurement(**e_dict)

	
class mtpy.core.edi.Edi(edi_fn=None)

	This class is for .edi files, mainly reading and writing. Has been tested
on Winglink and Phoenix output .edi’s, which are meant to follow the
archaic EDI format put forward by SEG. Can read impedance, Tipper and/or
spectra data.

The Edi class contains a class for each major section of the .edi file.

Frequency and components are ordered from highest to lowest frequency.

	Parameters

	edi_fn (string) – full path to .edi file to be read in.
default is None. If an .edi file is input, it is
automatically read in and attributes of Edi are filled

	Methods

	Description

	read_edi_file

	Reads in an edi file and populates the associated
classes and attributes.

	write_edi_file

	Writes an .edi file following the EDI format given
the apporpriate attributes are filled. Writes out
in impedance and Tipper format.

	_read_data

	Reads in the impedance and Tipper blocks, if the
.edi file is in ‘spectra’ format, read_data converts
the data to impedance and Tipper.

	_read_mt

	Reads impedance and tipper data from the appropriate
blocks of the .edi file.

	_read_spectra

	Reads in spectra data and converts it to impedance
and Tipper data.

	Attributes

	Description

	default

	Data_sect

	DataSection class, contains basic
information on the data collected and in
whether the data is in impedance or
spectra.

	

	Define_measurement

	DefineMeasurement class, contains
information on how the data was
collected.

	

	edi_fn

	full path to edi file read in

	None

	Header

	Header class, contains metadata on
where, when, and who collected the data

	

	Info

	Information class, contains information
on how the data was processed and how the
transfer functions where estimated.

	

	Tipper

	mtpy.core.z.Tipper class, contains the
tipper data

	

	Z

	mtpy.core.z.Z class, contains the
impedance data

	

	_block_len

	number of data in one line.

	6

	_data_header_str

	header string for each of the data
section

	‘>!****{0}****!’

	_num_format

	string format of data.

	‘ 15.6e’

	_t_labels

	labels for tipper blocks

	

	_z_labels

	labels for impedance blocks

	

	Change Latitude

	>>> import mtpy.core.edi as mtedi
>>> edi_obj = mtedi.Edi(edi_fn=r"/home/mt/mt01.edi")
>>> # change the latitude
>>> edi_obj.header.lat = 45.7869
>>> new_edi_fn = edi_obj.write_edi_file()

	Attributes

	
	elev

	Elevation in elevation units

	lat

	latitude in decimal degrees

	lon

	longitude in decimal degrees

	station

	station name

Methods

	read_edi_file(self[, edi_fn])

	Read in an edi file and fill attributes of each section’s classes.

	write_edi_file(self[, new_edi_fn, …])

	Write a new edi file from either an existing .edi file or from data input by the user into the attributes of Edi.

	
elev

	Elevation in elevation units

	
lat

	latitude in decimal degrees

	
lon

	longitude in decimal degrees

	
read_edi_file(self, edi_fn=None)

	Read in an edi file and fill attributes of each section’s classes.
Including:

	Header

	Info

	Define_measurement

	Data_sect

	Z

	Tipper

Note

Automatically detects if data is in spectra format. All
data read in is converted to impedance and Tipper.

	Parameters

	edi_fn (string) – full path to .edi file to be read in
default is None

	Example

	>>> import mtpy.core.Edi as mtedi
>>> edi_obj = mtedi.Edi()
>>> edi_obj.read_edi_file(edi_fn=r"/home/mt/mt01.edi")

	
station

	station name

	
write_edi_file(self, new_edi_fn=None, longitude_format='LON', latlon_format='dms')

	Write a new edi file from either an existing .edi file or from data
input by the user into the attributes of Edi.

	Parameters

	
	new_edi_fn (string) – full path to new edi file.
default is None, which will write to the same
file as the input .edi with as:
r”/home/mt/mt01_1.edi”

	longitude_format (string) – whether to write longitude as LON or LONG.
options are ‘LON’ or ‘LONG’, default ‘LON’

	latlon_format (string) – format of latitude and longitude in output edi,
degrees minutes seconds (‘dms’) or decimal
degrees (‘dd’)

	Returns

	full path to new edi file

	Return type

	string

	Example

	>>> import mtpy.core.edi as mtedi
>>> edi_obj = mtedi.Edi(edi_fn=r"/home/mt/mt01/edi")
>>> edi_obj.Header.dataid = 'mt01_rr'
>>> n_edi_fn = edi_obj.write_edi_file()

	
class mtpy.core.edi.HMeasurement(**kwargs)

	HMeasurement contains metadata for a magnetic field measurement

	Attributes

	Description

	id

	Channel number

	chtype

	[HX | HY | HZ | RHX | RHY]

	x

	x (m) north from reference point (station)

	y

	y (m) east from reference point (station)

	azm

	angle of sensor relative to north = 0

	acqchan

	name of the channel acquired usually same as chtype

	Fill Metadata

	>>> import mtpy.core.edi as mtedi
>>> h_dict = {'id': '1', 'chtype':'hx', 'x':0, 'y':0, 'azm':0}
>>> h_dict['acqchn'] = 'hx'
>>> hmeas = mtedi.HMeasurement(**h_dict)

	
class mtpy.core.edi.Header(edi_fn=None, **kwargs)

	Header class contains all the information in the header section of the .edi
file. A typical header block looks like:

>HEAD

 ACQBY=None
 ACQDATE=None
 DATAID=par28ew
 ELEV=0.000
 EMPTY=1e+32
 FILEBY=WG3DForward
 FILEDATE=2016/04/11 19:37:37 UTC
 LAT=-30:12:49
 LOC=None
 LON=139:47:50
 PROGDATE=2002-04-22
 PROGVERS=WINGLINK EDI 1.0.22
 COORDINATE SYSTEM = GEOGRAPHIC NORTH
 DECLINATION = 10.0

	Parameters

	edi_fn (string) – full path to .edi file to be read in.
default is None. If an .edi file is input attributes
of Header are filled.

Many of the attributes are needed in the .edi file. They are marked with
a yes for ‘In .edi’

	R60960842fb28-1

	Internally everything is converted to decimal degrees. Output is
written as HH:MM:SS.ss so Winglink can read them in.

	R60960842fb28-2

	If you want to change what metadata is written into the .edi file
change the items in _header_keys. Default attributes are:

	acqby

	acqdate

	coordinate_system

	dataid

	declination

	elev

	fileby

	lat

	loc

	lon

	filedate

	empty

	progdate

	progvers

	Methods

	Description

	get_header_list

	get header lines from edi file

	read_header

	read in header information from header_lines

	write_header

	write header lines, returns a list of lines to write

	Read Header

	>>> import mtpy.core.edi as mtedi
>>> header_obj = mtedi.Header(edi_fn=r"/home/mt/mt01.edi")

Methods

	get_header_list(self)

	Get the header information from the .edi file in the form of a list, where each item is a line in the header section.

	read_header(self[, header_list])

	read a header information from either edi file or a list of lines containing header information.

	write_header(self[, header_list, …])

	Write header information to a list of lines.

	
get_header_list(self)

	Get the header information from the .edi file in the form of a list,
where each item is a line in the header section.

	
read_header(self, header_list=None)

	read a header information from either edi file or a list of lines
containing header information.

	Parameters

	header_list (list) – should be read from an .edi file or input as
[‘key_01=value_01’, ‘key_02=value_02’]

	Input header_list

	>>> h_list = ['lat=36.7898', 'lon=120.73532', 'elev=120.0', ...
>>> 'dataid=mt01']
>>> import mtpy.core.edi as mtedi
>>> header = mtedi.Header()
>>> header.read_header(h_list)

	
write_header(self, header_list=None, longitude_format='LON', latlon_format='dms')

	
Write header information to a list of lines.

	param header_list

	should be read from an .edi file or input as
[‘key_01=value_01’, ‘key_02=value_02’]

	type header_list

	list

	param longitude_format

	whether to write longitude as LON or LONG.
options are ‘LON’ or ‘LONG’, default ‘LON’

	type longitude_format

	string

	param latlon_format

	format of latitude and longitude in output edi,
degrees minutes seconds (‘dms’) or decimal
degrees (‘dd’)

	type latlon_format

	string

	returns header_lines

	list of lines containing header information
will be of the form:

['>HEAD

	‘,

	‘ key_01=value_01

	‘]

	if None is input then reads from input .edi
file or uses attribute information to write
metadata.

	
class mtpy.core.edi.Information(edi_fn=None, edi_lines=None)

	Contain, read, and write info section of .edi file

not much to really do here, but just keep it in the same format that it is
read in as, except if it is in phoenix format then split the two paragraphs
up so they are sequential.

Methods

	get_info_list(self)

	get a list of lines from the info section

	read_info(self[, info_list])

	read information section of the .edi file

	write_info(self[, info_list])

	write out information

	
get_info_list(self)

	get a list of lines from the info section

	
read_info(self, info_list=None)

	read information section of the .edi file

	
write_info(self, info_list=None)

	write out information

Module EDI_Collection

Description:
To compute and encapsulate the properties of a set of EDI files

Author: fei.zhang@ga.gov.au

CreateDate: 2017-04-20

	
class mtpy.core.edi_collection.EdiCollection(edilist=None, mt_objs=None, outdir=None, ptol=0.05)

	A super class to encapsulate the properties pertinent to a set of EDI files

	Parameters

	
	edilist – a list of edifiles with full path, for read-only

	outdir – computed result to be stored in outdir

	ptol – period tolerance considered as equal, default 0.05 means 5 percent

The ptol parameter controls what freqs/periods are grouped together:
10 percent may result more double counting of freq/period data than 5 pct.
(eg: MT_Datasets/WPJ_EDI)

Methods

	create_measurement_csv(self, dest_dir[, …])

	create csv file from the data of EDI files: IMPEDANCE, APPARENT RESISTIVITIES AND PHASES see also utils/shapefiles_creator.py

	create_mt_station_gdf(self[, outshpfile])

	create station location geopandas dataframe, and output to shape file

	create_phase_tensor_csv(self, dest_dir[, …])

	create phase tensor ellipse and tipper properties.

	create_phase_tensor_csv_with_image(*args, …)

	Using PlotPhaseTensorMaps class to generate csv file of phase tensor attributes, etc.

	display_on_basemap(self)

	display MT stations which are in stored in geopandas dataframe in a base map.

	display_on_image(self)

	display/overlay the MT properties on a background geo-referenced map image

	export_edi_files(self, dest_dir[, …])

	export edi files.

	get_bounding_box(self[, epsgcode])

	compute bounding box

	get_min_max_distance(self)

	get the min and max distance between all possible pairs of stations.

	get_period_occurance(self, aper)

	For a given aperiod, compute its occurance frequencies among the stations/edi :param aper: a float value of the period :return:

	get_periods_by_stats(self[, percentage])

	check the presence of each period in all edi files, keep a list of periods which are at least percentage present :return: a list of periods which are present in at least percentage edi files

	get_phase_tensor_tippers(self, period[, …])

	For a given MT period (s) value, compute the phase tensor and tippers etc.

	get_station_utmzones_stats(self)

	A simple method to find what UTM zones these (edi files) MT stations belong to are they in a single UTM zone, which corresponds to a unique EPSG code? or do they belong to multiple UTM zones?

	get_stations_distances_stats(self)

	get the min max statistics of the distances between stations.

	plot_stations(self[, savefile, showfig])

	Visualise the geopandas df of MT stations

	select_periods(self[, show, period_list, …])

	Use edi_collection to analyse the whole set of EDI files

	show_obj(self[, dest_dir])

	test call object’s methods and show it’s properties

	
create_measurement_csv(self, dest_dir, period_list=None, interpolate=True)

	create csv file from the data of EDI files: IMPEDANCE, APPARENT RESISTIVITIES AND PHASES
see also utils/shapefiles_creator.py

	Parameters

	
	dest_dir – output directory

	period_list – list of periods; default=None, in which data for all available
frequencies are output

	interpolate – Boolean to indicate whether to interpolate data onto given period_list

	Returns

	csvfname

	
create_mt_station_gdf(self, outshpfile=None)

	create station location geopandas dataframe, and output to shape file

	Parameters

	outshpfile – output file

	Returns

	gdf

	
create_phase_tensor_csv(self, dest_dir, period_list=None, interpolate=True, file_name='phase_tensor.csv')

	create phase tensor ellipse and tipper properties.
Implementation based on mtpy.utils.shapefiles_creator.ShapeFilesCreator.create_csv_files

	Parameters

	
	dest_dir – output directory

	period_list – list of periods; default=None, in which data for all available
frequencies are output

	interpolate – Boolean to indicate whether to interpolate data onto given period_list

	file_name – output file name

	Returns

	pt_dict

	
create_phase_tensor_csv_with_image(*args, **kwargs)

	Using PlotPhaseTensorMaps class to generate csv file of phase tensor attributes, etc.
Only for comparison. This method is more expensive because it will create plot object first.

	Returns

	

	
display_on_basemap(self)

	display MT stations which are in stored in geopandas dataframe in a base map.

	Returns

	plot object

	
display_on_image(self)

	display/overlay the MT properties on a background geo-referenced map image

	Returns

	plot object

	
export_edi_files(self, dest_dir, period_list=None, interpolate=True, period_buffer=None, longitude_format='LON')

	export edi files.
:param dest_dir: output directory
:param period_list: list of periods; default=None, in which data for all available

frequencies are output

	Parameters

	
	interpolate – Boolean to indicate whether to interpolate data onto given period_list; otherwise
a period_list is obtained from get_periods_by_stats()

	file_name – output file name

	period_buffer – buffer so that interpolation doesn’t stretch too far
over periods. Provide a float or integer factor,
greater than which interpolation will not stretch.
e.g. 1.5 means only interpolate to a maximum of
1.5 times each side of each frequency value

	Returns

	

	
get_bounding_box(self, epsgcode=None)

	compute bounding box

	Returns

	bounding box in given proj coord system

	
get_min_max_distance(self)

	get the min and max distance between all possible pairs of stations.

	Returns

	min_dist, max_dist

	
get_period_occurance(self, aper)

	For a given aperiod, compute its occurance frequencies among the stations/edi
:param aper: a float value of the period
:return:

	
get_periods_by_stats(self, percentage=10.0)

	check the presence of each period in all edi files, keep a list of periods which are at least percentage present
:return: a list of periods which are present in at least percentage edi files

	
get_phase_tensor_tippers(self, period, interpolate=True)

	For a given MT period (s) value, compute the phase tensor and tippers etc.

	Parameters

	
	period – MT_period (s)

	interpolate – Boolean to indicate whether to interpolate on to the given period

	Returns

	dictionary pt_dict_list

	pt_dict keys [‘station’, ‘freq’, ‘lon’, ‘lat’, ‘phi_min’, ‘phi_max’, ‘azimuth’, ‘skew’, ‘n_skew’, ‘elliptic’,

	‘tip_mag_re’, ‘tip_mag_im’, ‘tip_ang_re’, ‘tip_ang_im’]

	
get_station_utmzones_stats(self)

	A simple method to find what UTM zones these (edi files) MT stations belong to
are they in a single UTM zone, which corresponds to a unique EPSG code?
or do they belong to multiple UTM zones?

	Returns

	a_dict like {UTMZone:Number_of_MT_sites}

	
get_stations_distances_stats(self)

	get the min max statistics of the distances between stations.
useful for determining the ellipses tipper sizes etc

	Returns

	dict={}

	
plot_stations(self, savefile=None, showfig=True)

	Visualise the geopandas df of MT stations

	Parameters

	
	savefile –

	showfig –

	Returns

	

	
select_periods(self, show=True, period_list=None, percentage=10.0)

	Use edi_collection to analyse the whole set of EDI files

	Parameters

	
	show – True or false

	period_list –

	percentage –

	Returns

	select_period_list

	
show_obj(self, dest_dir=None)

	test call object’s methods and show it’s properties

	Returns

	

	
mtpy.core.edi_collection.is_num_in_seq(anum, aseq, atol=0.0001)

	check if anum is in a sequence by a small tolerance

	Parameters

	
	anum – a number to be checked

	aseq – a sequence or a list of values

	atol – absolute tolerance

	Returns

	True | False

Module XML

Note

This module is written to align with the tools written by
Anna Kelbert <akelbert@usgs.gov>

	
class mtpy.core.mt_xml.MT_XML(**kwargs)

	Class to read and write MT information from XML format. This tries to
follow the format put forward by Anna Kelbert for archiving MT response
data.

A configuration file can be read in that might make it easier to write
multiple files for the same survey.

See also

mtpy.core.mt_xml.XML_Config

	Attributes

	Description

	Z

	object of type mtpy.core.z.Z

	Tipper

	object of type mtpy.core.z.Tipper

Note

All other attributes are of the same name and of type XML_element,
where attributes are name, value and attr. Attr contains any
tag information. This is left this way so that mtpy.core.mt.MT
can read in the information. Use mtpy.core.mt.MT for
conversion between data formats.

	Methods

	Description

	read_cfg_file

	Read a configuration file in the format of XML_Config

	read_xml_file

	Read an xml file

	write_xml_file

	Write an xml file

	Example

	::
>>> import mtpy.core.mt_xml as mtxml
>>> x = mtxml.read_xml_file(r”/home/mt_data/mt01.xml”)
>>> x.read_cfg_file(r”/home/mt_data/survey_xml.cfg”)
>>> x.write_xml_file(r”/home/mt_data/xml/mt01.xml”)

	Attributes

	
	Tipper

	get Tipper information

	Z

	get z information

Methods

	read_cfg_file(self[, cfg_fn])

	Read in a cfg file making all key = value pairs attribures of XML_Config.

	read_xml_file(self, xml_fn)

	read in an xml file and set attributes appropriately.

	write_cfg_file(self[, cfg_fn])

	Write out configuration file in the style of: parent.attribute = value

	write_xml_file(self, xml_fn[, cfg_fn])

	write xml from edi

	
Tipper

	get Tipper information

	
Z

	get z information

	
read_xml_file(self, xml_fn)

	read in an xml file and set attributes appropriately.

	
write_xml_file(self, xml_fn, cfg_fn=None)

	write xml from edi

	
exception mtpy.core.mt_xml.MT_XML_Error

	

	
class mtpy.core.mt_xml.XML_Config(**kwargs)

	Class to deal with configuration files for xml.

Includes all the important information for the station and how data was
processed.

Key Information includes:

	Name

	Purpose

	ProductID

	Station name

	ExternalUrl

	External URL to link to data

	Notes

	Any important information on station,
data collection.

	TimeSeriesArchived

	Information on Archiving time series including
URL.

	Image

	A location to an image of the station or
the MT response.

	
	ProductID –> station name

	
	ExternalUrl –> external url to link to data

	Notes –> any

Methods

	read_cfg_file(self[, cfg_fn])

	Read in a cfg file making all key = value pairs attribures of XML_Config.

	write_cfg_file(self[, cfg_fn])

	Write out configuration file in the style of: parent.attribute = value

	
read_cfg_file(self, cfg_fn=None)

	Read in a cfg file making all key = value pairs attribures of
XML_Config. Being sure all new attributes are XML_element objects.

	The assumed structure of the xml.cfg file is similar to:

	``# XML Configuration File MTpy

Attachement.Description = Original file use to produce XML
Attachment.Filename = None

Copyright.Citation.Authors = None
Copyright.Citation.DOI = None
Copyright.Citation.Journal = None
Copyright.Citation.Title = None
Copyright.Citation.Volume = None
Copyright.Citation.Year = None

PeriodRange(max=0)(min=0) = None``

where the heirarchy of information is separated by a . and if the
information has attribures they are in the name with (key=value)
syntax.

	
write_cfg_file(self, cfg_fn=None)

	Write out configuration file in the style of:
parent.attribute = value

	
class mtpy.core.mt_xml.XML_element(name, attr, value, **kwargs)

	
	Basically an ET element. The key components are

	
	‘name’ –> name of the element

	‘attr’ –> attribute information of the element

	‘value’ –> value of the element

Used the property function here to be sure that these 3 cannot be set
through the common k.value = 10, just in case there are similar names in
the xml file. This seemed to be the safest to avoid those cases.

	Attributes

	
	attr

	

	name

	

	value

	

Module JFile

	
class mtpy.core.jfile.JFile(j_fn=None)

	be able to read and write a j-file

Methods

	read_header(self[, j_lines])

	Parsing the header lines of a j-file to extract processing information.

	read_j_file(self[, j_fn])

	read_j_file will read in a *.j file output by BIRRP (better than reading lots of *.<k>r<l>.rf files)

	read_metadata(self[, j_lines, j_fn])

	read in the metadata of the station, or information of station logistics like: lat, lon, elevation

	
read_header(self, j_lines=None)

	Parsing the header lines of a j-file to extract processing information.

Input:
- j-file as list of lines (output of readlines())

Output:
- Dictionary with all parameters found

	
read_j_file(self, j_fn=None)

	read_j_file will read in a *.j file output by BIRRP (better than reading lots of *.<k>r<l>.rf files)

Input:
j-filename

Output: 4-tuple
- periods : N-array
- Z_array : 2-tuple - values and errors
- tipper_array : 2-tuple - values and errors
- processing_dict : parsed processing parameters from j-file header

	
read_metadata(self, j_lines=None, j_fn=None)

	read in the metadata of the station, or information of station
logistics like: lat, lon, elevation

Not really needed for a birrp output since all values are nan’s

Package Analysis

Module Distortion

mtpy/analysis/distortion.py

Contains functions for the determination of (galvanic) distortion of impedance tensors.
The methods used follow Bibby et al 2005.
As it has been pointed out in that paper, there are various possibilities for
constraining the solution, esp. in the 2D case.

Here we just implement the ‘most basic’ variety for the calculation of the
distortion tensor. Other methods can be implemented, but since the optimal assumptions and
constraints depend on the application, the actual place for further functions
is in an independent, personalised module.

Algorithm Details:
Finding the distortion of a Z array. Using the phase tensor
so, Z arrays are transformed into PTs first), following Bibby et al. 2005.

First, try to find periods that indicate 1D. From them determine D incl.
the g-factor by calculatiing a weighted mean. The g is assumed in order to
cater for the missing unknown in the system, it is here set to det(X)^0.5.
After that is found, the function no_distortion from the Z module can be
called to obtain the unperturbated regional impedance tensor.

Second, if there are no 1D sections: Find the strike angle, then rotate the
Z to the principal axis. In order to do that, use the rotate(-strike) method
of the Z module. Then take the real part of the rotated Z. As in the 1D case,
we need an assumption to get rid of the (2) unknowns:
set det(D) = P and det(D) = T, where P,T can be chosen. Common choice is to
set one of P,T to an arbitrary value (e.g. 1). Then check, for which values
of the other parameter S^2 = T^2+4*P*X_12*X_21/det(X) > 0 holds.

@UofA, 2013 (LK)

Edited by JP, 2016

	
mtpy.analysis.distortion.find_1d_distortion(z_object, include_non1d=False)

	find 1D distortion tensor from z object

ONly use the 1D part of the Z to determine D.
Treat all frequencies as 1D, if “include_non1d = True”.

	
mtpy.analysis.distortion.find_2d_distortion(z_object, include_non2d=False)

	find 2D distortion tensor from z object

ONly use the 2D part of the Z to determine D.
Treat all frequencies as 2D, if “include_non2d = True”.

	
mtpy.analysis.distortion.find_distortion(z_object, g='det', num_freq=None, lo_dims=None)

	find optimal distortion tensor from z object

automatically determine the dimensionality over all frequencies, then find
the appropriate distortion tensor D

	Parameters

	
	z_objectmtpy.core.z object

	
	g[‘det’ | ‘01’ | ‘10]

	type of distortion correction
default is ‘det’

	num_freqint

	number of frequencies to look for distortion from
the index 0
default is None, meaning all frequencies are used

	lo_dimslist

	list of dimensions for each frequency
default is None, meaning calculated from data

	Returns

	
	distortionnp.ndarray(2, 2)

	
distortion array all real values

	distortion_errnp.ndarray(2, 2)

	distortion error array

Examples

	Estimate Distortion

	>>> import mtpy.analysis.distortion as distortion
>>> dis, dis_err = distortion.find_distortion(z_obj, num_freq=12)

	
mtpy.analysis.distortion.remove_distortion(z_array=None, z_object=None, num_freq=None, g='det')

	remove distortion from an impedance tensor using the method outlined by
Bibby et al., [2005].

	Parameters

	
	z_arraynp.ndarray((nf, 2, 2))

	
numpy array of impedance tensor
default is None

	z_objectmtpy.core.z object

	default is None

	num_freqint

	number of frequecies to look for distortion
default is None, meaning look over all frequencies

	g[‘det’ | ‘01’ | ‘10]

	type of distortion to look for
default is ‘det’

	Returns

	
	distortionnp.ndarray (2, 2)

	
distortion array

	new_z_objmtpy.core.z

	z object with distortion removed and error calculated

Examples

	Remove Distortion

	>>> import mtpy.analysis.distortion as distortion
>>> d, new_z = distortion.remove_distortion(z_object=z_obj)

Module Geometry

mtpy/mtpy/analysis/geometry.py

Contains classes and functions for handling geometry analysis of impedance tensors:

dimensionality, strike directions, alphas/skews/…

	1d - 2d : excentricity of ellipses

	2d - 3d : skew < threshold (to be given as argument)

	strike: frequency - depending angle (incl. 90degree ambiguity)

@UofA, 2013(LK)

Edited by JP, 2016

	
mtpy.analysis.geometry.dimensionality(z_array=None, z_object=None, pt_array=None, pt_object=None, skew_threshold=5, eccentricity_threshold=0.1)

	Esitmate dimensionality of an impedance tensor, frequency by frequency.

Dimensionality is estimated from the phase tensor given the threshold
criteria on the skew angle and eccentricity following Bibby et al., 2005
and Booker, 2014.

	Returns

	
	dimensionsnp.ndarray(nf, dtype=int)

	an array of dimesions for each frequency
the values are [1 | 2 | 3]

Examples

	Estimate Dimesions

	>>> import mtpy.analysis.geometry as geometry
>>> dim = geometry.dimensionality(z_object=z_obj,
>>> skew_threshold=3)

	
mtpy.analysis.geometry.eccentricity(z_array=None, z_object=None, pt_array=None, pt_object=None)

	Estimate eccentricy of a given impedance or phase tensor object

	Returns

	
	eccentricitynp.ndarray(nf)

	eccentricity_err : np.ndarray(nf)

Examples

	Estimate Dimesions

	>>> import mtpy.analysis.geometry as geometry
>>> ec, ec_err= geometry.eccentricity(z_object=z_obj)

	
mtpy.analysis.geometry.strike_angle(z_array=None, z_object=None, pt_array=None, pt_object=None, skew_threshold=5, eccentricity_threshold=0.1)

	Estimate strike angle from 2D parts of the impedance tensor given the
skew and eccentricity thresholds

	Returns

	
	strikenp.ndarray(nf)

	an array of strike angles in degrees for each frequency
assuming 0 is north, and e is 90. There is a 90
degree ambiguity in the angle.

Examples

	Estimate Dimesions

	>>> import mtpy.analysis.geometry as geometry
>>> strike = geometry.strike_angle(z_object=z_obj,
>>> skew_threshold=3)

Module Phase Tensor

Following Caldwell et al, 2004

Residual Phase Tensor following Heise et al., [2008]

@UofA, 2013
(LK)

Revised by Peacock, 2016

	
class mtpy.analysis.pt.PhaseTensor(pt_array=None, pt_err_array=None, z_array=None, z_err_array=None, z_object=None, freq=None, pt_rot=0.0)

	PhaseTensor class - generates a Phase Tensor (PT) object.

Methods include reading and writing from and to edi-objects, rotations
combinations of Z instances, as well as
calculation of invariants, inverse, amplitude/phase,…

PT is a complex array of the form (n_freq, 2, 2),
with indices in the following order:

PTxx: (0,0) - PTxy: (0,1) - PTyx: (1,0) - PTyy: (1,1)

	All internal methods are based on (Caldwell et al.,2004) and

	(Bibby et al.,2005), in which they use the canonical cartesian 2D

reference (x1, x2). However, all components, coordinates,
and angles for in- and outputs are given in the geographical
reference frame:

x-axis = North ; y-axis = East (; z-axis = Down)

	Therefore, all results from using those methods are consistent

	(angles are referenced from North rather than x1).

	Attributes

	Description

	freq

	array of frequencies associated with elements of
impedance tensor.

	pt

	phase tensor array

	pt_err

	phase tensor error

	z

	impedance tensor

	z_err

	impedance error

	rotation_angle

	rotation angle in degrees

	Attributes

	
	alpha

	Return the principal axis angle (strike) of PT in degrees (incl.

	alpha_err

	

	azimuth

	Returns the azimuth angle related to geoelectric strike in degrees

	azimuth_err

	

	beta

	Return the 3D-dimensionality angle Beta of PT in degrees (incl.

	beta_err

	

	det

	Return the determinant of PT (incl.

	det_err

	

	ellipticity

	Returns the ellipticity of the phase tensor, related to dimesionality

	ellipticity_err

	

	freq

	freq array

	invariants

	Return a dictionary of PT-invariants.

	only1d

	

	only2d

	

	phimax

	Return the angle Phi_max of PT (incl.

	phimax_err

	

	phimin

	Return the angle Phi_min of PT (incl.

	phimin_err

	

	pt

	Phase tensor array

	pt_err

	Phase tensor error array, must be same shape as pt

	skew

	Return the skew of PT (incl.

	skew_err

	

	trace

	Return the trace of PT (incl.

	trace_err

	

Methods

	rotate(self, alpha)

	Rotate PT array.

	set_z_object(self, z_object)

	Read in Z object and convert information into PhaseTensor object attributes.

	
alpha

	
	Return the principal axis angle (strike) of PT in degrees

	(incl. uncertainties).

Output:
- Alpha - Numpy array
- Error of Alpha - Numpy array

	
azimuth

	Returns the azimuth angle related to geoelectric strike in degrees
including uncertainties

	
beta

	Return the 3D-dimensionality angle Beta of PT in degrees
(incl. uncertainties).

Output:
- Beta - Numpy array
- Error of Beta - Numpy array

	
det

	Return the determinant of PT (incl. uncertainties).

Output:
- Det(PT) - Numpy array
- Error of Det(PT) - Numpy array

	
ellipticity

	Returns the ellipticity of the phase tensor, related to dimesionality

	
freq

	freq array

	
invariants

	Return a dictionary of PT-invariants.

Contains:
trace, skew, det, phimax, phimin, beta

	
phimax

	Return the angle Phi_max of PT (incl. uncertainties).

Phi_max is calculated according to Bibby et al. 2005: Phi_max = Pi2 + Pi1

Output:
- Phi_max - Numpy array
- Error of Phi_max - Numpy array

	
phimin

	Return the angle Phi_min of PT (incl. uncertainties).

	Phi_min is calculated according to Bibby et al. 2005:

	Phi_min = Pi2 - Pi1

Output:
- Phi_min - Numpy array
- Error of Phi_min - Numpy array

	
pt

	Phase tensor array

	
pt_err

	Phase tensor error array, must be same shape as pt

	
rotate(self, alpha)

	Rotate PT array. Change the rotation angles attribute respectively.

	Rotation angle must be given in degrees. All angles are referenced to

	geographic North, positive in clockwise direction.
(Mathematically negative!)

In non-rotated state, X refs to North and Y to East direction.

	
set_z_object(self, z_object)

	Read in Z object and convert information into PhaseTensor object
attributes.

	
skew

	Return the skew of PT (incl. uncertainties).

Output:
- Skew(PT) - Numpy array
- Error of Skew(PT) - Numpy array

	
trace

	Return the trace of PT (incl. uncertainties).

Output:
- Trace(PT) - Numpy array
- Error of Trace(PT) - Numpy array

	
class mtpy.analysis.pt.ResidualPhaseTensor(pt_object1=None, pt_object2=None, residualtype='heise')

	PhaseTensor class - generates a Phase Tensor (PT) object DeltaPhi

DeltaPhi = 1 - Phi1^-1*Phi2

Methods

	compute_residual_pt(self, pt_o1, pt_o2)

	Read in two instance of the MTpy PhaseTensor class.

	read_pts(self, pt1, pt2[, pt1err, pt2err])

	Read two PT arrays and calculate the ResPT array (incl.

	set_rpt(self, rpt_array)

	Set the attribute ‘rpt’ (ResidualPhaseTensor array).

	set_rpt_err(self, rpt_err_array)

	Set the attribute ‘rpt_err’ (ResidualPhaseTensor-error array).

	
compute_residual_pt(self, pt_o1, pt_o2)

	Read in two instance of the MTpy PhaseTensor class.

Update attributes:
rpt, rpt_err, _pt1, _pt2, _pt1err, _pt2err

	
read_pts(self, pt1, pt2, pt1err=None, pt2err=None)

	Read two PT arrays and calculate the ResPT array (incl. uncertainties).

Input:
- 2x PT array

Optional:
- 2x pt_error array

	
set_rpt(self, rpt_array)

	Set the attribute ‘rpt’ (ResidualPhaseTensor array).

Input:
ResPT array

Test for shape, but no test for consistency!

	
set_rpt_err(self, rpt_err_array)

	Set the attribute ‘rpt_err’ (ResidualPhaseTensor-error array).

Input:
ResPT-error array

Test for shape, but no test for consistency!

	
mtpy.analysis.pt.edi_file2pt(filename)

	Calculate Phase Tensor from Edi-file (incl. uncertainties)

Input:
- Edi-file : full path to the Edi-file

Return:
- PT object

	
mtpy.analysis.pt.z2pt(z_array, z_err_array=None)

	Calculate Phase Tensor from Z array (incl. uncertainties)

Input:
- Z : 2x2 complex valued Numpy array

Optional:
- Z-error : 2x2 real valued Numpy array

Return:
- PT : 2x2 real valued Numpy array
- PT-error : 2x2 real valued Numpy array

	
mtpy.analysis.pt.z_object2pt(z_object)

	Calculate Phase Tensor from Z object (incl. uncertainties)

Input:
- Z-object : instance of the MTpy Z class

Return:
- PT object

Module Static Shift

module for estimating static shift

Created on Mon Aug 19 10:06:21 2013

@author: jpeacock

	
mtpy.analysis.staticshift.estimate_static_spatial_median(edi_fn, radius=1000.0, num_freq=20, freq_skip=4, shift_tol=0.15)

	Remove static shift from a station using a spatial median filter. This
will look at all the edi files in the same directory as edi_fn and find
those station within the given radius (meters). Then it will find
the medain static shift for the x and y modes and remove it, given that
it is larger than the shift tolerance away from 1. A new edi file will
be written in a new folder called SS.

	Returns

	
	shift_corrections(float, float)

	static shift corrections for x and y modes

	
mtpy.analysis.staticshift.remove_static_shift_spatial_filter(edi_fn, radius=1000, num_freq=20, freq_skip=4, shift_tol=0.15, plot=False)

	Remove static shift from a station using a spatial median filter. This
will look at all the edi files in the same directory as edi_fn and find
those station within the given radius (meters). Then it will find
the medain static shift for the x and y modes and remove it, given that
it is larger than the shift tolerance away from 1. A new edi file will
be written in a new folder called SS.

	Returns

	
	new_edi_fn_ssstring

	
new path to the edi file with static shift removed

	shift_corrections(float, float)

	static shift corrections for x and y modes

	plot_objmtplot.plot_multiple_mt_responses object

	If plot is True a plot_obj is returned
If plot is False None is returned

Module Z Invariants

Created on Wed May 08 09:40:42 2013

Interpreted from matlab code written by Stephan Thiel 2005

@author: jpeacock

	
class mtpy.analysis.zinvariants.Zinvariants(z_object=None, z_array=None, z_err_array=None, freq=None, rot_z=0)

	calculates invariants from Weaver et al. [2000, 2003]. At the moment it
does not calculate the error for each invariant, only the strike.

	Attributes

	
	inv1real off diaganol part normalizing factor

	inv2 : imaginary off diaganol normalizing factor

inv3 : real anisotropy factor (range from [0,1])

inv4 : imaginary anisotropy factor (range from [0,1])

inv5 : suggests electric field twist

inv6 : suggests in phase small scale distortion

inv7 : suggests 3D structure

strike : strike angle (deg) assuming positive clockwise 0=N

strike_err : strike angle error (deg)

q : dependent variable suggesting dimensionality

Methods

	compute_invariants(self)

	Computes the invariants according to Weaver et al., [2000, 2003]

	rotate(self, rot_z)

	Rotates the impedance tensor by the angle rot_z clockwise positive assuming 0 is North

	set_freq(self, freq)

	set the freq array, needs to be the same length at z

	set_z(self, z_array)

	set the z array.

	set_z_err(self, z_err_array)

	set the z_err array.

	
compute_invariants(self)

	Computes the invariants according to Weaver et al., [2000, 2003]

Mostly used to plot Mohr’s circles

In a 1D case: rho = mu (inv1**2+inv2**2)/w & phi = arctan(inv2/inv1)

	Sets the invariants as attributes:

	inv1 : real off diaganol part normalizing factor

inv2 : imaginary off diaganol normalizing factor

inv3 : real anisotropy factor (range from [0,1])

inv4 : imaginary anisotropy factor (range from [0,1])

inv5 : suggests electric field twist

inv6 : suggests in phase small scale distortion

inv7 : suggests 3D structure

strike : strike angle (deg) assuming positive clockwise 0=N

strike_err : strike angle error (deg)

q : dependent variable suggesting dimensionality

	
rotate(self, rot_z)

	Rotates the impedance tensor by the angle rot_z clockwise positive
assuming 0 is North

	
set_freq(self, freq)

	set the freq array, needs to be the same length at z

	
set_z(self, z_array)

	set the z array.

If the shape changes or the freq are changed need to input
those as well.

	
set_z_err(self, z_err_array)

	set the z_err array.

If the shape changes or the freq are changed need to input
those as well.

Package Modeling

Module ModEM

	
exception mtpy.modeling.modem.ModEMError

	

	
exception mtpy.modeling.modem.DataError

	Raise for ModEM Data class specific exceptions

	
class mtpy.modeling.modem.Stations(**kwargs)

	station locations class

	..note:: If the survey steps across multiple UTM zones, then a

	distance will be added to the stations to place them in
the correct location. This distance is
_utm_grid_size_north and _utm_grid_size_east. You should
these parameters to place the locations in the proper spot
as grid distances and overlaps change over the globe.
This is not implemented yet

	Attributes

	
	center_point

	calculate the center point from the given station locations

	east

	

	elev

	

	lat

	

	lon

	

	north

	

	rel_east

	

	rel_north

	

	station

	

	utm_zone

	

Methods

	calculate_rel_locations(self[, shift_east, …])

	put station in a coordinate system relative to (shift_east, shift_north) (+) shift right or up (-) shift left or down

	check_utm_crossing(self)

	If the stations cross utm zones, then estimate distance by computing distance on a sphere.

	get_station_locations(self, input_list)

	get station locations from a list of edi files

	rotate_stations(self, rotation_angle)

	Rotate stations assuming N is 0

	
calculate_rel_locations(self, shift_east=0, shift_north=0)

	put station in a coordinate system relative to
(shift_east, shift_north)
(+) shift right or up
(-) shift left or down

	
center_point

	calculate the center point from the given station locations

	Returns

	
	center_locationnp.ndarray

	structured array of length 1
dtype includes (east, north, zone, lat, lon)

	
check_utm_crossing(self)

	If the stations cross utm zones, then estimate distance by computing
distance on a sphere.

	
get_station_locations(self, input_list)

	get station locations from a list of edi files

	Returns

	
	
	fills station_locations array

	

	
rotate_stations(self, rotation_angle)

	Rotate stations assuming N is 0

	Returns

	
	
	refils rel_east and rel_north in station_locations. Does this

	because you will still need the original locations for plotting
later.

	
class mtpy.modeling.modem.Data(edi_list=None, **kwargs)

	Data will read and write .dat files for ModEM and convert a WS data file
to ModEM format.

	..note: :: the data is interpolated onto the given periods such that all

	stations invert for the same periods. The interpolation is
a linear interpolation of each of the real and imaginary parts
of the impedance tensor and induction tensor.
See mtpy.core.mt.MT.interpolate for more details

	Attributes

	
	rotation_angle

	Rotate data assuming N=0, E=90

	station_locations

	location of stations

Methods

	center_stations(self, model_fn[, data_fn])

	Center station locations to the middle of cells, might be useful for topography.

	change_data_elevation(self, model_fn[, …])

	At each station in the data file rewrite the elevation, so the station is on the surface, not floating in air.

	compute_inv_error(self)

	compute the error from the given parameters

	compute_phase_tensor(self, datfile, outdir)

	Compute the phase tensors from a ModEM dat file :param datfile: path2/file.dat :return: path2csv created by this method

	convert_modem_to_ws(self[, data_fn, …])

	convert a ModEM data file to WS format.

	convert_ws3dinv_data_file(self, ws_data_fn)

	convert a ws3dinv data file into ModEM format

	fill_data_array(self[, new_edi_dir, …])

	fill the data array from mt_dict

	filter_periods(mt_obj, per_array)

	Select the periods of the mt_obj that are in per_array.

	get_header_string(error_type, error_value, …)

	reset the header sring for file

	get_mt_dict(self)

	get mt_dict from edi file list

	get_parameters(self)

	get important parameters for documentation

	get_period_list(self)

	make a period list to invert for

	get_relative_station_locations(self)

	get station locations from edi files

	project_stations_on_topography(self, …[, …])

	This method is used in add_topography().

	read_data_file(self[, data_fn, center_utm])

	Read ModEM data file

	write_data_file(self[, save_path, …])

	write data file for ModEM will save file as save_path/fn_basename

	write_vtk_station_file(self[, …])

	write a vtk file for station locations.

	
center_stations(self, model_fn, data_fn=None)

	Center station locations to the middle of cells, might be useful for
topography.

	Returns

	
	new_data_fnstring

	full path to new data file

	
change_data_elevation(self, model_fn, data_fn=None, res_air=1000000000000.0)

	At each station in the data file rewrite the elevation, so the station is
on the surface, not floating in air.

	
compute_inv_error(self)

	compute the error from the given parameters

	
compute_phase_tensor(self, datfile, outdir)

	Compute the phase tensors from a ModEM dat file
:param datfile: path2/file.dat
:return: path2csv created by this method

	
convert_modem_to_ws(self, data_fn=None, ws_data_fn=None, error_map=[1, 1, 1, 1])

	convert a ModEM data file to WS format.

	
convert_ws3dinv_data_file(self, ws_data_fn, station_fn=None, save_path=None, fn_basename=None)

	convert a ws3dinv data file into ModEM format

	
fill_data_array(self, new_edi_dir=None, use_original_freq=False, longitude_format='LON')

	fill the data array from mt_dict

	
static filter_periods(mt_obj, per_array)

	Select the periods of the mt_obj that are in per_array.
used to do original freq inversion.

	Parameters

	
	mt_obj –

	per_array –

	Returns

	array of selected periods (subset) of the mt_obj

	
static get_header_string(error_type, error_value, rotation_angle)

	reset the header sring for file

	
get_mt_dict(self)

	get mt_dict from edi file list

	
get_parameters(self)

	get important parameters for documentation

	
get_period_list(self)

	make a period list to invert for

	
get_relative_station_locations(self)

	get station locations from edi files

	
project_stations_on_topography(self, model_object, air_resistivity=1000000000000.0)

	This method is used in add_topography().
It will Re-write the data file to change the elevation column.
And update covariance mask according topo elevation model.
:param model_object:
:param air_resistivity:
:return:

	
read_data_file(self, data_fn=None, center_utm=None)

	Read ModEM data file

	inputs:

	data_fn = full path to data file name
center_utm = option to provide real world coordinates of the center of

the grid for putting the data and model back into
utm/grid coordinates, format [east_0, north_0, z_0]

	Fills attributes:

	
	data_array

	period_list

	mt_dict

	
rotation_angle

	Rotate data assuming N=0, E=90

	
station_locations

	location of stations

	
write_data_file(self, save_path=None, fn_basename=None, rotation_angle=None, compute_error=True, fill=True, elevation=False, use_original_freq=False, longitude_format='LON')

	write data file for ModEM
will save file as save_path/fn_basename

	
write_vtk_station_file(self, vtk_save_path=None, vtk_fn_basename='ModEM_stations')

	write a vtk file for station locations. For now this in relative
coordinates.

	
class mtpy.modeling.modem.Model(stations_object=None, data_object=None, **kwargs)

	make and read a FE mesh grid

	The mesh assumes the coordinate system where:

	x == North
y == East
z == + down

All dimensions are in meters.

The mesh is created by first making a regular grid around the station area,
then padding cells are added that exponentially increase to the given
extensions. Depth cell increase on a log10 scale to the desired depth,
then padding cells are added that increase exponentially.

Examples

	Example 1 –> create mesh first then data file

	>>> import mtpy.modeling.modem as modem
>>> import os
>>> # 1) make a list of all .edi files that will be inverted for
>>> edi_path = r"/home/EDI_Files"
>>> edi_list = [os.path.join(edi_path, edi)

for edi in os.listdir(edi_path)

>>> ... if edi.find('.edi') > 0]
>>> # 2) Make a Stations object
>>> stations_obj = modem.Stations()
>>> stations_obj.get_station_locations_from_edi(edi_list)
>>> # 3) make a grid from the stations themselves with 200m cell spacing
>>> mmesh = modem.Model(station_obj)
>>> # change cell sizes
>>> mmesh.cell_size_east = 200,
>>> mmesh.cell_size_north = 200
>>> mmesh.ns_ext = 300000 # north-south extension
>>> mmesh.ew_ext = 200000 # east-west extension of model
>>> mmesh.make_mesh()
>>> # check to see if the mesh is what you think it should be
>>> msmesh.plot_mesh()
>>> # all is good write the mesh file
>>> msmesh.write_model_file(save_path=r"/home/modem/Inv1")
>>> # create data file
>>> md = modem.Data(edi_list, station_locations=mmesh.station_locations)
>>> md.write_data_file(save_path=r"/home/modem/Inv1")

	Example 2 –> Rotate Mesh

	>>> mmesh.mesh_rotation_angle = 60
>>> mmesh.make_mesh()

Note

ModEM assumes all coordinates are relative to North and East, and
does not accommodate mesh rotations, therefore, here the rotation
is of the stations, which essentially does the same thing. You
will need to rotate you data to align with the ‘new’ coordinate
system.

	Attributes

	Description

	_logger

	python logging object that put messages in logging
format defined in logging configure file, see MtPyLog
more information

	cell_number_ew

	optional for user to specify the total number of sells
on the east-west direction. default is None

	cell_number_ns

	optional for user to specify the total number of sells
on the north-south direction. default is None

	cell_size_east

	mesh block width in east direction
default is 500

	cell_size_north

	mesh block width in north direction
default is 500

	grid_center

	center of the mesh grid

	grid_east

	overall distance of grid nodes in east direction

	grid_north

	overall distance of grid nodes in north direction

	grid_z

	overall distance of grid nodes in z direction

	model_fn

	full path to initial file name

	model_fn_basename

	default name for the model file name

	n_air_layers

	number of air layers in the model. default is 0

	n_layers

	total number of vertical layers in model

	nodes_east

	relative distance between nodes in east direction

	nodes_north

	relative distance between nodes in north direction

	nodes_z

	relative distance between nodes in east direction

	pad_east

	number of cells for padding on E and W sides
default is 7

	pad_north

	number of cells for padding on S and N sides
default is 7

	pad_num

	number of cells with cell_size with outside of
station area. default is 3

	pad_method

	method to use to create padding:
extent1, extent2 - calculate based on ew_ext and
ns_ext
stretch - calculate based on pad_stretch factors

	pad_stretch_h

	multiplicative number for padding in horizontal
direction.

	pad_stretch_v

	padding cells N & S will be pad_root_north**(x)

	pad_z

	number of cells for padding at bottom
default is 4

	ew_ext

	E-W extension of model in meters

	ns_ext

	N-S extension of model in meters

	res_scale

	
	scaling method of res, supports

	‘loge’ - for log e format
‘log’ or ‘log10’ - for log with base 10
‘linear’ - linear scale

default is ‘loge’

	res_list

	list of resistivity values for starting model

	res_model

	starting resistivity model

	res_initial_value

	resistivity initial value for the resistivity model
default is 100

	mesh_rotation_angle

	Angle to rotate the grid to. Angle is measured
positve clockwise assuming North is 0 and east is 90.
default is None

	save_path

	path to save file to

	sea_level

	sea level in grid_z coordinates. default is 0

	station_locations

	location of stations

	title

	title in initial file

	z1_layer

	first layer thickness

	z_bottom

	absolute bottom of the model default is 300,000

	z_target_depth

	Depth of deepest target, default is 50,000

	Attributes

	
	nodes_east

	

	nodes_north

	

	nodes_z

	

Methods

	add_layers_to_mesh(self[, n_add_layers, …])

	Function to add constant thickness layers to the top or bottom of mesh.

	add_topography_to_model2(self[, …])

	if air_layers is non-zero, will add topo: read in topograph file, make a surface model.

	assign_resistivity_from_surfacedata(self, …)

	assign resistivity value to all points above or below a surface requires the surface_dict attribute to exist and contain data for surface key (can get this information from ascii file using project_surface)

	get_parameters(self)

	get important model parameters to write to a file for documentation later.

	interpolate_elevation2(self[, surfacefile, …])

	project a surface to the model grid and add resulting elevation data to a dictionary called surface_dict.

	make_mesh(self)

	create finite element mesh according to user-input parameters.

	make_z_mesh_new(self)

	new version of make_z_mesh.

	plot_mesh(self[, east_limits, north_limits, …])

	Plot the mesh to show model grid

	plot_mesh_xy(self)

	# add mesh grid lines in xy plan north-east map :return:

	plot_mesh_xz(self)

	display the mesh in North-Depth aspect :return:

	plot_topography(self)

	display topography elevation data together with station locations on a cell-index N-E map :return:

	read_gocad_sgrid_file(self, sgrid_header_file)

	read a gocad sgrid file and put this info into a ModEM file.

	read_model_file(self[, model_fn])

	read an initial file and return the pertinent information including grid positions in coordinates relative to the center point (0,0) and starting model.

	read_ws_model_file(self, ws_model_fn)

	reads in a WS3INV3D model file

	write_gocad_sgrid_file(self[, fn, origin, …])

	write a model to gocad sgrid

	write_model_file(self, **kwargs)

	will write an initial file for ModEM.

	write_vtk_file(self[, vtk_save_path, …])

	write a vtk file to view in Paraview or other

	write_xyres(self[, location_type, origin, …])

	write files containing depth slice data (x, y, res for each depth)

	print_mesh_params

	

	print_model_file_summary

	

	
add_layers_to_mesh(self, n_add_layers=None, layer_thickness=None, where='top')

	Function to add constant thickness layers to the top or bottom of mesh.
Note: It is assumed these layers are added before the topography. If
you want to add topography layers, use function add_topography_to_model2

	Parameters

	
	n_add_layers – integer, number of layers to add

	layer_thickness – real value or list/array. Thickness of layers,
defaults to z1 layer. Can provide a single value
or a list/array containing multiple layer
thicknesses.

	where – where to add, top or bottom

	
add_topography_to_model2(self, topographyfile=None, topographyarray=None, interp_method='nearest', air_resistivity=1000000000000.0, topography_buffer=None, airlayer_type='log_up')

	if air_layers is non-zero, will add topo: read in topograph file, make a surface model.
Call project_stations_on_topography in the end, which will re-write the .dat file.

If n_airlayers is zero, then cannot add topo data, only bathymetry is needed.

	Parameters

	
	topographyfile – file containing topography (arcgis ascii grid)

	topographyarray – alternative to topographyfile - array of elevation values on model grid

	interp_method – interpolation method for topography, ‘nearest’, ‘linear’, or ‘cubic’

	air_resistivity – resistivity value to assign to air

	topography_buffer – buffer around stations to calculate minimum and maximum topography value to use for meshing

	airlayer_type – how to set air layer thickness - options are ‘constant’ for constant air layer thickness,
or ‘log’, for logarithmically increasing air layer thickness upward

	
assign_resistivity_from_surfacedata(self, top_surface, bottom_surface, resistivity_value)

	assign resistivity value to all points above or below a surface
requires the surface_dict attribute to exist and contain data for
surface key (can get this information from ascii file using
project_surface)

inputs
surfacename = name of surface (must correspond to key in surface_dict)
resistivity_value = value to assign
where = ‘above’ or ‘below’ - assign resistivity above or below the

surface

	
get_parameters(self)

	get important model parameters to write to a file for documentation
later.

	
interpolate_elevation2(self, surfacefile=None, surface=None, surfacename=None, method='nearest')

	project a surface to the model grid and add resulting elevation data
to a dictionary called surface_dict. Assumes the surface is in lat/long
coordinates (wgs84)

returns
nothing returned, but surface data are added to surface_dict under
the key given by surfacename.

inputs
choose to provide either surface_file (path to file) or surface (tuple).
If both are provided then surface tuple takes priority.

surface elevations are positive up, and relative to sea level.
surface file format is:

ncols 3601
nrows 3601
xllcorner -119.00013888889 (longitude of lower left)
yllcorner 36.999861111111 (latitude of lower left)
cellsize 0.00027777777777778
NODATA_value -9999
elevation data W –> E
N
|
V
S

Alternatively, provide a tuple with:
(lon,lat,elevation)
where elevation is a 2D array (shape (ny,nx)) containing elevation
points (order S -> N, W -> E)
and lon, lat are either 1D arrays containing list of longitudes and
latitudes (in the case of a regular grid) or 2D arrays with same shape
as elevation array containing longitude and latitude of each point.

other inputs:
surfacename = name of surface for putting into dictionary
surface_epsg = epsg number of input surface, default is 4326 for lat/lon(wgs84)
method = interpolation method. Default is ‘nearest’, if model grid is
dense compared to surface points then choose ‘linear’ or ‘cubic’

	
make_mesh(self)

	create finite element mesh according to user-input parameters.

	The mesh is built by:

	
	Making a regular grid within the station area.

	Adding pad_num of cell_width cells outside of station area

	Adding padding cells to given extension and number of padding
cells.

	Making vertical cells starting with z1_layer increasing
logarithmically (base 10) to z_target_depth and num_layers.

	Add vertical padding cells to desired extension.

	Check to make sure none of the stations lie on a node.
If they do then move the node by .02*cell_width

	
make_z_mesh_new(self)

	new version of make_z_mesh. make_z_mesh and M

	
plot_mesh(self, east_limits=None, north_limits=None, z_limits=None, **kwargs)

	Plot the mesh to show model grid

	
plot_mesh_xy(self)

	# add mesh grid lines in xy plan north-east map
:return:

	
plot_mesh_xz(self)

	display the mesh in North-Depth aspect
:return:

	
plot_topography(self)

	display topography elevation data together with station locations on a cell-index N-E map
:return:

	
read_gocad_sgrid_file(self, sgrid_header_file, air_resistivity=1e+39, sea_resistivity=0.3, sgrid_positive_up=True)

	read a gocad sgrid file and put this info into a ModEM file.
Note: can only deal with grids oriented N-S or E-W at this stage,
with orthogonal coordinates

	
read_model_file(self, model_fn=None)

	read an initial file and return the pertinent information including
grid positions in coordinates relative to the center point (0,0) and
starting model.

Note that the way the model file is output, it seems is that the
blocks are setup as

ModEM: WS:
———- —–
0—–> N_north 0——–>N_east
| |
| |
V V
N_east N_north

	
read_ws_model_file(self, ws_model_fn)

	reads in a WS3INV3D model file

	
write_gocad_sgrid_file(self, fn=None, origin=[0, 0, 0], clip=0, no_data_value=-99999)

	write a model to gocad sgrid

optional inputs:

	fn = filename to save to. File extension (‘.sg’) will be appended.

	default is the model name with extension removed

origin = real world [x,y,z] location of zero point in model grid
clip = how much padding to clip off the edge of the model for export,

provide one integer value or list of 3 integers for x,y,z directions

no_data_value = no data value to put in sgrid

	
write_model_file(self, **kwargs)

	will write an initial file for ModEM.

Note that x is assumed to be S –> N, y is assumed to be W –> E and
z is positive downwards. This means that index [0, 0, 0] is the
southwest corner of the first layer. Therefore if you build a model
by hand the layer block will look as it should in map view.

Also, the xgrid, ygrid and zgrid are assumed to be the relative
distance between neighboring nodes. This is needed because wsinv3d
builds the model from the bottom SW corner assuming the cell width
from the init file.

	
write_vtk_file(self, vtk_save_path=None, vtk_fn_basename='ModEM_model_res')

	write a vtk file to view in Paraview or other

	
write_xyres(self, location_type='EN', origin=[0, 0], model_epsg=None, depth_index='all', savepath=None, outfile_basename='DepthSlice', log_res=False, model_utm_zone=None, clip=[0, 0])

	write files containing depth slice data (x, y, res for each depth)

	origin = x,y coordinate of zero point of ModEM_grid, or name of file

	containing this info (full path or relative to model files)

savepath = path to save to, default is the model object save path
location_type = ‘EN’ or ‘LL’ xy points saved as eastings/northings or

longitude/latitude, if ‘LL’ need to also provide model_epsg

model_epsg = epsg number that was used to project the model
outfile_basename = string for basename for saving the depth slices.
log_res = True/False - option to save resistivity values as log10

instead of linear

clip = number of cells to clip on each of the east/west and north/south edges

	
class mtpy.modeling.modem.Residual(**kwargs)

	class to contain residuals for each data point, and rms values for each
station

	Attributes/Key Words

	Description

	work_dir

	

	residual_fn

	full path to data file

	residual_array

	numpy.ndarray (num_stations) structured to store
data. keys are:

	station –> station name

	lat –> latitude in decimal degrees

	lon –> longitude in decimal degrees

	elev –> elevation (m)

	
	rel_east – > relative east location to

	center_position (m)

	
	rel_north –> relative north location to

	center_position (m)

	east –> UTM east (m)

	north –> UTM north (m)

	zone –> UTM zone

	
	z –> impedance tensor residual (measured - modelled)

	(num_freq, 2, 2)

	
	z_err –> impedance tensor error array with

	shape (num_freq, 2, 2)

	
	tip –> Tipper residual (measured - modelled)

	(num_freq, 1, 2)

	
	tipperr –> Tipper array with shape

	(num_freq, 1, 2)

	rms

	

	rms_array

	numpy.ndarray structured to store station
location values and rms. Keys are:

	station –> station name

	east –> UTM east (m)

	north –> UTM north (m)

	lat –> latitude in decimal degrees

	lon –> longitude in decimal degrees

	elev –> elevation (m)

	zone –> UTM zone

	
	rel_east – > relative east location to

	center_position (m)

	
	rel_north –> relative north location to

	center_position (m)

	
	rms –> root-mean-square residual for each

	station

	rms_tip

	

	rms_z

	

Methods

	calculate_residual_from_data(self[, …])

	created by ak on 26/09/2017

	write_rms_to_file(self)

	write rms station data to file

	get_rms

	

	read_residual_file

	

	
calculate_residual_from_data(self, data_fn=None, resp_fn=None, save_fn_basename=None)

	created by ak on 26/09/2017

	Parameters

	
	data_fn –

	resp_fn –

	Returns

	

	
write_rms_to_file(self)

	write rms station data to file

	
class mtpy.modeling.modem.ControlInv(**kwargs)

	read and write control file for how the inversion starts and how it is run

Methods

	read_control_file(self[, control_fn])

	read in a control file

	write_control_file(self[, control_fn, …])

	write control file

	
read_control_file(self, control_fn=None)

	read in a control file

	
write_control_file(self, control_fn=None, save_path=None, fn_basename=None)

	write control file

	
class mtpy.modeling.modem.ControlFwd(**kwargs)

	read and write control file for

This file controls how the inversion starts and how it is run

Methods

	read_control_file(self[, control_fn])

	read in a control file

	write_control_file(self[, control_fn, …])

	write control file

	
read_control_file(self, control_fn=None)

	read in a control file

	
write_control_file(self, control_fn=None, save_path=None, fn_basename=None)

	write control file

	
class mtpy.modeling.modem.Covariance(grid_dimensions=None, **kwargs)

	read and write covariance files

Methods

	read_cov_file(self, cov_fn)

	read a covariance file

	write_cov_vtk_file(self, cov_vtk_fn[, …])

	write a vtk file of the covariance to match things up

	write_covariance_file(self[, cov_fn, …])

	write a covariance file

	get_parameters

	

	
read_cov_file(self, cov_fn)

	read a covariance file

	
write_cov_vtk_file(self, cov_vtk_fn, model_fn=None, grid_east=None, grid_north=None, grid_z=None)

	write a vtk file of the covariance to match things up

	
write_covariance_file(self, cov_fn=None, save_path=None, cov_fn_basename=None, model_fn=None, sea_water=0.3, air=1000000000000.0)

	write a covariance file

	
class mtpy.modeling.modem.ModEMConfig(**kwargs)

	read and write configuration files for how each inversion is run

Methods

	add_dict(self[, fn, obj])

	add dictionary based on file name or object

	write_config_file(self[, save_dir, …])

	write a config file based on provided information

	
add_dict(self, fn=None, obj=None)

	add dictionary based on file name or object

	
write_config_file(self, save_dir=None, config_fn_basename='ModEM_inv.cfg')

	write a config file based on provided information

	
class mtpy.modeling.modem.ModelManipulator(model_fn=None, data_fn=None, **kwargs)

	will plot a model from wsinv3d or init file so the user can manipulate the
resistivity values relatively easily. At the moment only plotted
in map view.

	Example

	::
>>> import mtpy.modeling.ws3dinv as ws
>>> initial_fn = r”/home/MT/ws3dinv/Inv1/WSInitialFile”
>>> mm = ws.WSModelManipulator(initial_fn=initial_fn)

	Buttons

	Description

	‘=’

	increase depth to next vertical node (deeper)

	‘-‘

	decrease depth to next vertical node (shallower)

	‘q’

	quit the plot, rewrites initial file when pressed

	‘a’

	copies the above horizontal layer to the present layer

	‘b’

	copies the below horizonal layer to present layer

	‘u’

	undo previous change

	Attributes

	Description

	ax1

	matplotlib.axes instance for mesh plot of the model

	ax2

	matplotlib.axes instance of colorbar

	cb

	matplotlib.colorbar instance for colorbar

	cid_depth

	matplotlib.canvas.connect for depth

	cmap

	matplotlib.colormap instance

	cmax

	maximum value of resistivity for colorbar. (linear)

	cmin

	minimum value of resistivity for colorbar (linear)

	data_fn

	full path fo data file

	depth_index

	integer value of depth slice for plotting

	dpi

	resolution of figure in dots-per-inch

	dscale

	depth scaling, computed internally

	east_line_xlist

	list of east mesh lines for faster plotting

	east_line_ylist

	list of east mesh lines for faster plotting

	fdict

	dictionary of font properties

	fig

	matplotlib.figure instance

	fig_num

	number of figure instance

	fig_size

	size of figure in inches

	font_size

	size of font in points

	grid_east

	location of east nodes in relative coordinates

	grid_north

	location of north nodes in relative coordinates

	grid_z

	location of vertical nodes in relative coordinates

	initial_fn

	full path to initial file

	m_height

	mean height of horizontal cells

	m_width

	mean width of horizontal cells

	map_scale

	[‘m’ | ‘km’] scale of map

	mesh_east

	np.meshgrid of east, north

	mesh_north

	np.meshgrid of east, north

	mesh_plot

	matplotlib.axes.pcolormesh instance

	model_fn

	full path to model file

	new_initial_fn

	full path to new initial file

	nodes_east

	spacing between east nodes

	nodes_north

	spacing between north nodes

	nodes_z

	spacing between vertical nodes

	north_line_xlist

	list of coordinates of north nodes for faster plotting

	north_line_ylist

	list of coordinates of north nodes for faster plotting

	plot_yn

	[‘y’ | ‘n’] plot on instantiation

	radio_res

	matplotlib.widget.radio instance for change resistivity

	rect_selector

	matplotlib.widget.rect_selector

	res

	np.ndarray(nx, ny, nz) for model in linear resistivity

	res_copy

	copy of res for undo

	res_dict

	dictionary of segmented resistivity values

	res_list

	list of resistivity values for model linear scale

	res_model

	np.ndarray(nx, ny, nz) of resistivity values from
res_list (linear scale)

	res_model_int

	np.ndarray(nx, ny, nz) of integer values corresponding
to res_list for initial model

	res_value

	current resistivty value of radio_res

	save_path

	path to save initial file to

	station_east

	station locations in east direction

	station_north

	station locations in north direction

	xlimits

	limits of plot in e-w direction

	ylimits

	limits of plot in n-s direction

	Attributes

	
	nodes_east

	

	nodes_north

	

	nodes_z

	

Methods

	add_layers_to_mesh(self[, n_add_layers, …])

	Function to add constant thickness layers to the top or bottom of mesh.

	add_topography_to_model2(self[, …])

	if air_layers is non-zero, will add topo: read in topograph file, make a surface model.

	assign_resistivity_from_surfacedata(self, …)

	assign resistivity value to all points above or below a surface requires the surface_dict attribute to exist and contain data for surface key (can get this information from ascii file using project_surface)

	change_model_res(self, xchange, ychange)

	change resistivity values of resistivity model

	get_model(self)

	reads in initial file or model file and set attributes:

	get_parameters(self)

	get important model parameters to write to a file for documentation later.

	interpolate_elevation2(self[, surfacefile, …])

	project a surface to the model grid and add resulting elevation data to a dictionary called surface_dict.

	make_mesh(self)

	create finite element mesh according to user-input parameters.

	make_z_mesh_new(self)

	new version of make_z_mesh.

	plot(self)

	plots the model with:

	plot_mesh(self[, east_limits, north_limits, …])

	Plot the mesh to show model grid

	plot_mesh_xy(self)

	# add mesh grid lines in xy plan north-east map :return:

	plot_mesh_xz(self)

	display the mesh in North-Depth aspect :return:

	plot_topography(self)

	display topography elevation data together with station locations on a cell-index N-E map :return:

	read_gocad_sgrid_file(self, sgrid_header_file)

	read a gocad sgrid file and put this info into a ModEM file.

	read_model_file(self[, model_fn])

	read an initial file and return the pertinent information including grid positions in coordinates relative to the center point (0,0) and starting model.

	read_ws_model_file(self, ws_model_fn)

	reads in a WS3INV3D model file

	rect_onselect(self, eclick, erelease)

	on selecting a rectangle change the colors to the resistivity values

	redraw_plot(self)

	redraws the plot

	rewrite_model_file(self[, model_fn, …])

	write an initial file for wsinv3d from the model created.

	set_res_list(self, res_list)

	on setting res_list also set the res_dict to correspond

	set_res_value(self, val)

	

	write_gocad_sgrid_file(self[, fn, origin, …])

	write a model to gocad sgrid

	write_model_file(self, **kwargs)

	will write an initial file for ModEM.

	write_vtk_file(self[, vtk_save_path, …])

	write a vtk file to view in Paraview or other

	write_xyres(self[, location_type, origin, …])

	write files containing depth slice data (x, y, res for each depth)

	print_mesh_params

	

	print_model_file_summary

	

	
change_model_res(self, xchange, ychange)

	change resistivity values of resistivity model

	
get_model(self)

	
	reads in initial file or model file and set attributes:

	-resmodel
-northrid
-eastrid
-zgrid
-res_list if initial file

	
plot(self)

	
	plots the model with:

	-a radio dial for depth slice
-radio dial for resistivity value

	
rect_onselect(self, eclick, erelease)

	on selecting a rectangle change the colors to the resistivity values

	
redraw_plot(self)

	redraws the plot

	
rewrite_model_file(self, model_fn=None, save_path=None, model_fn_basename=None)

	write an initial file for wsinv3d from the model created.

	
set_res_list(self, res_list)

	on setting res_list also set the res_dict to correspond

	
class mtpy.modeling.modem.PlotResponse(data_fn=None, resp_fn=None, **kwargs)

	plot data and response

Plots the real and imaginary impedance and induction vector if present.

	Example

	>>> import mtpy.modeling.modem as modem
>>> dfn = r"/home/MT/ModEM/Inv1/DataFile.dat"
>>> rfn = r"/home/MT/ModEM/Inv1/Test_resp_000.dat"
>>> mrp = modem.PlotResponse(data_fn=dfn, resp_fn=rfn)
>>> # plot only the TE and TM modes
>>> mrp.plot_component = 2
>>> mrp.redraw_plot()

	Attributes

	Description

	color_mode

	[‘color’ | ‘bw’] color or black and white plots

	cted

	color for data Z_XX and Z_XY mode

	ctem

	color for model Z_XX and Z_XY mode

	ctmd

	color for data Z_YX and Z_YY mode

	ctmm

	color for model Z_YX and Z_YY mode

	data_fn

	full path to data file

	data_object

	WSResponse instance

	e_capsize

	cap size of error bars in points (default is .5)

	e_capthick

	cap thickness of error bars in points (default
is 1)

	fig_dpi

	resolution of figure in dots-per-inch (300)

	fig_list

	list of matplotlib.figure instances for plots

	fig_size

	size of figure in inches (default is [6, 6])

	font_size

	size of font for tick labels, axes labels are
font_size+2 (default is 7)

	legend_border_axes_pad

	padding between legend box and axes

	legend_border_pad

	padding between border of legend and symbols

	legend_handle_text_pad

	padding between text labels and symbols of legend

	legend_label_spacing

	padding between labels

	legend_loc

	location of legend

	legend_marker_scale

	scale of symbols in legend

	lw

	line width data curves (default is .5)

	ms

	size of markers (default is 1.5)

	lw_r

	line width response curves (default is .5)

	ms_r

	size of markers response curves (default is 1.5)

	mted

	marker for data Z_XX and Z_XY mode

	mtem

	marker for model Z_XX and Z_XY mode

	mtmd

	marker for data Z_YX and Z_YY mode

	mtmm

	marker for model Z_YX and Z_YY mode

	phase_limits

	limits of phase

	plot_component

	[2 | 4] 2 for TE and TM or 4 for all components

	plot_style

	[1 | 2] 1 to plot each mode in a seperate
subplot and 2 to plot xx, xy and yx, yy in same
plots

	plot_type

	[‘1’ | list of station name] ‘1’ to plot all
stations in data file or input a list of station
names to plot if station_fn is input, otherwise
input a list of integers associated with the
index with in the data file, ie 2 for 2nd station

	plot_z

	[True | False] default is True to plot
impedance, False for plotting resistivity and
phase

	plot_yn

	[‘n’ | ‘y’] to plot on instantiation

	res_limits

	limits of resistivity in linear scale

	resp_fn

	full path to response file

	resp_object

	WSResponse object for resp_fn, or list of
WSResponse objects if resp_fn is a list of
response files

	station_fn

	full path to station file written by WSStation

	subplot_bottom

	space between axes and bottom of figure

	subplot_hspace

	space between subplots in vertical direction

	subplot_left

	space between axes and left of figure

	subplot_right

	space between axes and right of figure

	subplot_top

	space between axes and top of figure

	subplot_wspace

	space between subplots in horizontal direction

Methods

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	plot

	

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y')

	save_plot will save the figure to save_fn.

	
class mtpy.modeling.modem.PlotSlices(model_fn, data_fn=None, **kwargs)

	
	Plot all cartesian axis-aligned slices and be able to scroll through the model

	Extract arbitrary profiles (e.g. along a seismic line) from a model

	Example

	>>> import mtpy.modeling.modem as modem
>>> mfn = r"/home/modem/Inv1/Modular_NLCG_100.rho"
>>> dfn = r"/home/modem/Inv1/ModEM_data.dat"
>>> pds = ws.PlotSlices(model_fn=mfn, data_fn=dfn)

	Buttons

	Description

	‘e’

	moves n-s slice east by one model block

	‘w’

	moves n-s slice west by one model block

	‘n’

	moves e-w slice north by one model block

	‘m’

	moves e-w slice south by one model block

	‘d’

	moves depth slice down by one model block

	‘u’

	moves depth slice up by one model block

	Attributes

	Description

	ax_en

	matplotlib.axes instance for depth slice map view

	ax_ez

	matplotlib.axes instance for e-w slice

	ax_map

	matplotlib.axes instance for location map

	ax_nz

	matplotlib.axes instance for n-s slice

	climits

	(min , max) color limits on resistivity in log
scale. default is (0, 4)

	cmap

	name of color map for resisitiviy.
default is ‘jet_r’

	data_fn

	full path to data file name

	draw_colorbar

	show colorbar on exported plot; default True

	dscale

	scaling parameter depending on map_scale

	east_line_xlist

	list of line nodes of east grid for faster plotting

	east_line_ylist

	list of line nodes of east grid for faster plotting

	ew_limits

	(min, max) limits of e-w in map_scale units
default is None and scales to station area

	fig

	matplotlib.figure instance for figure

	fig_aspect

	aspect ratio of plots. default is 1

	fig_dpi

	resolution of figure in dots-per-inch
default is 300

	fig_num

	figure instance number

	fig_size

	[width, height] of figure window.
default is [6,6]

	font_dict

	dictionary of font keywords, internally created

	font_size

	size of ticklables in points, axes labes are
font_size+2. default is 4

	grid_east

	relative location of grid nodes in e-w direction
in map_scale units

	grid_north

	relative location of grid nodes in n-s direction
in map_scale units

	grid_z

	relative location of grid nodes in z direction
in map_scale units

	index_east

	index value of grid_east being plotted

	index_north

	index value of grid_north being plotted

	index_vertical

	index value of grid_z being plotted

	initial_fn

	full path to initial file

	key_press

	matplotlib.canvas.connect instance

	map_scale

	[‘m’ | ‘km’] scale of map. default is km

	mesh_east

	np.meshgrid(grid_east, grid_north)[0]

	mesh_en_east

	np.meshgrid(grid_east, grid_north)[0]

	mesh_en_north

	np.meshgrid(grid_east, grid_north)[1]

	mesh_ez_east

	np.meshgrid(grid_east, grid_z)[0]

	mesh_ez_vertical

	np.meshgrid(grid_east, grid_z)[1]

	mesh_north

	np.meshgrid(grid_east, grid_north)[1]

	mesh_nz_north

	np.meshgrid(grid_north, grid_z)[0]

	mesh_nz_vertical

	np.meshgrid(grid_north, grid_z)[1]

	model_fn

	full path to model file

	ms

	size of station markers in points. default is 2

	nodes_east

	relative distance betwen nodes in e-w direction
in map_scale units

	nodes_north

	relative distance betwen nodes in n-s direction
in map_scale units

	nodes_z

	relative distance betwen nodes in z direction
in map_scale units

	north_line_xlist

	list of line nodes north grid for faster plotting

	north_line_ylist

	list of line nodes north grid for faster plotting

	ns_limits

	(min, max) limits of plots in n-s direction
default is None, set veiwing area to station area

	plot_yn

	[‘y’ | ‘n’] ‘y’ to plot on instantiation
default is ‘y’

	plot_stations

	default False

	plot_grid

	show grid on exported plot; default False

	res_model

	np.ndarray(n_north, n_east, n_vertical) of
model resistivity values in linear scale

	save_format

	exported format; default png

	save_path

	path to save exported plots to; default current working folder

	station_color

	color of station marker. default is black

	station_dict_east

	location of stations for each east grid row

	station_dict_north

	location of stations for each north grid row

	station_east

	location of stations in east direction

	station_fn

	full path to station file

	station_font_color

	color of station label

	station_font_pad

	padding between station marker and label

	station_font_rotation

	angle of station label

	station_font_size

	font size of station label

	station_font_weight

	weight of font for station label

	station_id

	[min, max] index values for station labels

	station_marker

	station marker

	station_names

	name of stations

	station_north

	location of stations in north direction

	subplot_bottom

	distance between axes and bottom of figure window

	subplot_hspace

	distance between subplots in vertical direction

	subplot_left

	distance between axes and left of figure window

	subplot_right

	distance between axes and right of figure window

	subplot_top

	distance between axes and top of figure window

	subplot_wspace

	distance between subplots in horizontal direction

	title

	title of plot

	xminorticks

	location of xminorticks

	yminorticks

	location of yminorticks

	z_limits

	(min, max) limits in vertical direction,

Methods

	export_slices(self[, plane, indexlist, …])

	Plot Slices

	get_slice(self[, option, coords, nsteps, …])

	
	param option

	can be either of ‘STA’, ‘XY’ or ‘XYZ’. For ‘STA’ or ‘XY’, a vertical

	get_station_grid_locations(self)

	get the grid line on which a station resides for plotting

	on_key_press(self, event)

	on a key press change the slices

	plot(self)

	plot:

	read_files(self)

	read in the files to get appropriate information

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self[, save_fn, fig_dpi, …])

	save_figure will save the figure to save_fn.

	
export_slices(self, plane='N-E', indexlist=[], station_buffer=200, save=True)

	Plot Slices

	Parameters

	
	plane – must be either ‘N-E’, ‘N-Z’ or ‘E-Z’

	indexlist – must be a list or 1d numpy array of indices

	station_buffer – spatial buffer (in metres) used around grid locations for
selecting stations to be projected and plotted on profiles.
Ignored if .plot_stations is set to False.

	Returns

	[figlist, savepaths]. A list containing (1) lists of Figure objects,
for further manipulation (2) corresponding paths for saving them to disk

	
get_slice(self, option='STA', coords=[], nsteps=-1, nn=1, p=4, absolute_query_locations=False, extrapolate=True)

	
	Parameters

	
	option – can be either of ‘STA’, ‘XY’ or ‘XYZ’. For ‘STA’ or ‘XY’, a vertical
profile is returned based on station coordinates or arbitrary XY
coordinates, respectively. For ‘XYZ’, interpolated values at those
coordinates are returned

	coords – Numpy array of shape (np, 2) for option=’XY’ or of shape (np, 3) for
option=’XYZ’, where np is the number of coordinates. Not used for
option=’STA’, in which case a vertical profile is created based on
station locations.

	nsteps – When option is set to ‘STA’ or ‘XY’, nsteps can be used to create a
regular grid along the profile in the horizontal direction. By default,
when nsteps=-1, the horizontal grid points are defined by station
locations or values in the XY array. This parameter is ignored for
option=’XYZ’

	nn – Number of neighbours to use for interpolation.
Nearest neighbour interpolation is returned when nn=1 (default).
When nn>1, inverse distance weighted interpolation is returned. See
link below for more details:
https://en.wikipedia.org/wiki/Inverse_distance_weighting

	p – Power parameter, which determines the relative influence of near and far
neighbours during interpolation. For p<=3, causes interpolated values to
be dominated by points far away. Larger values of p assign greater influence
to values near the interpolated point.

	absolute_query_locations – if True, query locations are shifted to be centered
on the center of station locations; default False, in which case the function
treats query locations as relative coordinates. For option=’STA’, this parameter
is ignored, since station locations are internally treated as relative
coordinates

	extrapolate – Extrapolates values (default), which can be particularly useful
for extracting values at nodes, since the field values are given
for cell-centres.

	Returns

	
	1: when option is ‘STA’ or ‘XY’

	gd, gz, gv : where gd, gz and gv are 2D grids of distance (along profile),
depth and interpolated values, respectively. The shape of the 2D grids
depend on the number of stations or the number of xy coordinates provided,
for options ‘STA’ or ‘XY’, respectively, the number of vertical model grid
points and whether regular gridding in the horizontal direction was enabled
with nsteps>-1.

	2: when option is ‘XYZ’

	gv : list of interpolated values of shape (np)

	
get_station_grid_locations(self)

	get the grid line on which a station resides for plotting

	
on_key_press(self, event)

	on a key press change the slices

	
plot(self)

	
	plot:

	east vs. vertical,
north vs. vertical,
east vs. north

	
read_files(self)

	read in the files to get appropriate information

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y')

	save_figure will save the figure to save_fn.

	
class mtpy.modeling.modem.PlotRMSMaps(residual_fn, **kwargs)

	plots the RMS as (data-model)/(error) in map view for all components
of the data file. Gets this infomration from the .res file output
by ModEM.

Methods

	plot(self)

	plot rms in map view

	plot_loop(self[, fig_format])

	loop over all periods and save figures accordingly

	save_figure(self[, save_path, …])

	save figure in the desired format

	read_residual_fn

	

	redraw_plot

	

	
plot(self)

	plot rms in map view

	
plot_loop(self, fig_format='png')

	loop over all periods and save figures accordingly

	
save_figure(self, save_path=None, save_fn_basename=None, save_fig_dpi=None, fig_format='png', fig_close=True)

	save figure in the desired format

Generate files for ModEM

revised by JP 2017
revised by AK 2017 to bring across functionality from ak branch

	
class mtpy.modeling.modem.plot_response.PlotResponse(data_fn=None, resp_fn=None, **kwargs)

	plot data and response

Plots the real and imaginary impedance and induction vector if present.

	Example

	>>> import mtpy.modeling.modem as modem
>>> dfn = r"/home/MT/ModEM/Inv1/DataFile.dat"
>>> rfn = r"/home/MT/ModEM/Inv1/Test_resp_000.dat"
>>> mrp = modem.PlotResponse(data_fn=dfn, resp_fn=rfn)
>>> # plot only the TE and TM modes
>>> mrp.plot_component = 2
>>> mrp.redraw_plot()

	Attributes

	Description

	color_mode

	[‘color’ | ‘bw’] color or black and white plots

	cted

	color for data Z_XX and Z_XY mode

	ctem

	color for model Z_XX and Z_XY mode

	ctmd

	color for data Z_YX and Z_YY mode

	ctmm

	color for model Z_YX and Z_YY mode

	data_fn

	full path to data file

	data_object

	WSResponse instance

	e_capsize

	cap size of error bars in points (default is .5)

	e_capthick

	cap thickness of error bars in points (default
is 1)

	fig_dpi

	resolution of figure in dots-per-inch (300)

	fig_list

	list of matplotlib.figure instances for plots

	fig_size

	size of figure in inches (default is [6, 6])

	font_size

	size of font for tick labels, axes labels are
font_size+2 (default is 7)

	legend_border_axes_pad

	padding between legend box and axes

	legend_border_pad

	padding between border of legend and symbols

	legend_handle_text_pad

	padding between text labels and symbols of legend

	legend_label_spacing

	padding between labels

	legend_loc

	location of legend

	legend_marker_scale

	scale of symbols in legend

	lw

	line width data curves (default is .5)

	ms

	size of markers (default is 1.5)

	lw_r

	line width response curves (default is .5)

	ms_r

	size of markers response curves (default is 1.5)

	mted

	marker for data Z_XX and Z_XY mode

	mtem

	marker for model Z_XX and Z_XY mode

	mtmd

	marker for data Z_YX and Z_YY mode

	mtmm

	marker for model Z_YX and Z_YY mode

	phase_limits

	limits of phase

	plot_component

	[2 | 4] 2 for TE and TM or 4 for all components

	plot_style

	[1 | 2] 1 to plot each mode in a seperate
subplot and 2 to plot xx, xy and yx, yy in same
plots

	plot_type

	[‘1’ | list of station name] ‘1’ to plot all
stations in data file or input a list of station
names to plot if station_fn is input, otherwise
input a list of integers associated with the
index with in the data file, ie 2 for 2nd station

	plot_z

	[True | False] default is True to plot
impedance, False for plotting resistivity and
phase

	plot_yn

	[‘n’ | ‘y’] to plot on instantiation

	res_limits

	limits of resistivity in linear scale

	resp_fn

	full path to response file

	resp_object

	WSResponse object for resp_fn, or list of
WSResponse objects if resp_fn is a list of
response files

	station_fn

	full path to station file written by WSStation

	subplot_bottom

	space between axes and bottom of figure

	subplot_hspace

	space between subplots in vertical direction

	subplot_left

	space between axes and left of figure

	subplot_right

	space between axes and right of figure

	subplot_top

	space between axes and top of figure

	subplot_wspace

	space between subplots in horizontal direction

Methods

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	plot

	

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y')

	save_plot will save the figure to save_fn.

Generate files for ModEM

revised by JP 2017
revised by AK 2017 to bring across functionality from ak branch

	
class mtpy.modeling.modem.plot_slices.PlotSlices(model_fn, data_fn=None, **kwargs)

	
	Plot all cartesian axis-aligned slices and be able to scroll through the model

	Extract arbitrary profiles (e.g. along a seismic line) from a model

	Example

	>>> import mtpy.modeling.modem as modem
>>> mfn = r"/home/modem/Inv1/Modular_NLCG_100.rho"
>>> dfn = r"/home/modem/Inv1/ModEM_data.dat"
>>> pds = ws.PlotSlices(model_fn=mfn, data_fn=dfn)

	Buttons

	Description

	‘e’

	moves n-s slice east by one model block

	‘w’

	moves n-s slice west by one model block

	‘n’

	moves e-w slice north by one model block

	‘m’

	moves e-w slice south by one model block

	‘d’

	moves depth slice down by one model block

	‘u’

	moves depth slice up by one model block

	Attributes

	Description

	ax_en

	matplotlib.axes instance for depth slice map view

	ax_ez

	matplotlib.axes instance for e-w slice

	ax_map

	matplotlib.axes instance for location map

	ax_nz

	matplotlib.axes instance for n-s slice

	climits

	(min , max) color limits on resistivity in log
scale. default is (0, 4)

	cmap

	name of color map for resisitiviy.
default is ‘jet_r’

	data_fn

	full path to data file name

	draw_colorbar

	show colorbar on exported plot; default True

	dscale

	scaling parameter depending on map_scale

	east_line_xlist

	list of line nodes of east grid for faster plotting

	east_line_ylist

	list of line nodes of east grid for faster plotting

	ew_limits

	(min, max) limits of e-w in map_scale units
default is None and scales to station area

	fig

	matplotlib.figure instance for figure

	fig_aspect

	aspect ratio of plots. default is 1

	fig_dpi

	resolution of figure in dots-per-inch
default is 300

	fig_num

	figure instance number

	fig_size

	[width, height] of figure window.
default is [6,6]

	font_dict

	dictionary of font keywords, internally created

	font_size

	size of ticklables in points, axes labes are
font_size+2. default is 4

	grid_east

	relative location of grid nodes in e-w direction
in map_scale units

	grid_north

	relative location of grid nodes in n-s direction
in map_scale units

	grid_z

	relative location of grid nodes in z direction
in map_scale units

	index_east

	index value of grid_east being plotted

	index_north

	index value of grid_north being plotted

	index_vertical

	index value of grid_z being plotted

	initial_fn

	full path to initial file

	key_press

	matplotlib.canvas.connect instance

	map_scale

	[‘m’ | ‘km’] scale of map. default is km

	mesh_east

	np.meshgrid(grid_east, grid_north)[0]

	mesh_en_east

	np.meshgrid(grid_east, grid_north)[0]

	mesh_en_north

	np.meshgrid(grid_east, grid_north)[1]

	mesh_ez_east

	np.meshgrid(grid_east, grid_z)[0]

	mesh_ez_vertical

	np.meshgrid(grid_east, grid_z)[1]

	mesh_north

	np.meshgrid(grid_east, grid_north)[1]

	mesh_nz_north

	np.meshgrid(grid_north, grid_z)[0]

	mesh_nz_vertical

	np.meshgrid(grid_north, grid_z)[1]

	model_fn

	full path to model file

	ms

	size of station markers in points. default is 2

	nodes_east

	relative distance betwen nodes in e-w direction
in map_scale units

	nodes_north

	relative distance betwen nodes in n-s direction
in map_scale units

	nodes_z

	relative distance betwen nodes in z direction
in map_scale units

	north_line_xlist

	list of line nodes north grid for faster plotting

	north_line_ylist

	list of line nodes north grid for faster plotting

	ns_limits

	(min, max) limits of plots in n-s direction
default is None, set veiwing area to station area

	plot_yn

	[‘y’ | ‘n’] ‘y’ to plot on instantiation
default is ‘y’

	plot_stations

	default False

	plot_grid

	show grid on exported plot; default False

	res_model

	np.ndarray(n_north, n_east, n_vertical) of
model resistivity values in linear scale

	save_format

	exported format; default png

	save_path

	path to save exported plots to; default current working folder

	station_color

	color of station marker. default is black

	station_dict_east

	location of stations for each east grid row

	station_dict_north

	location of stations for each north grid row

	station_east

	location of stations in east direction

	station_fn

	full path to station file

	station_font_color

	color of station label

	station_font_pad

	padding between station marker and label

	station_font_rotation

	angle of station label

	station_font_size

	font size of station label

	station_font_weight

	weight of font for station label

	station_id

	[min, max] index values for station labels

	station_marker

	station marker

	station_names

	name of stations

	station_north

	location of stations in north direction

	subplot_bottom

	distance between axes and bottom of figure window

	subplot_hspace

	distance between subplots in vertical direction

	subplot_left

	distance between axes and left of figure window

	subplot_right

	distance between axes and right of figure window

	subplot_top

	distance between axes and top of figure window

	subplot_wspace

	distance between subplots in horizontal direction

	title

	title of plot

	xminorticks

	location of xminorticks

	yminorticks

	location of yminorticks

	z_limits

	(min, max) limits in vertical direction,

Methods

	export_slices(self[, plane, indexlist, …])

	Plot Slices

	get_slice(self[, option, coords, nsteps, …])

	
	param option

	can be either of ‘STA’, ‘XY’ or ‘XYZ’. For ‘STA’ or ‘XY’, a vertical

	get_station_grid_locations(self)

	get the grid line on which a station resides for plotting

	on_key_press(self, event)

	on a key press change the slices

	plot(self)

	plot:

	read_files(self)

	read in the files to get appropriate information

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self[, save_fn, fig_dpi, …])

	save_figure will save the figure to save_fn.

	
export_slices(self, plane='N-E', indexlist=[], station_buffer=200, save=True)

	Plot Slices

	Parameters

	
	plane – must be either ‘N-E’, ‘N-Z’ or ‘E-Z’

	indexlist – must be a list or 1d numpy array of indices

	station_buffer – spatial buffer (in metres) used around grid locations for
selecting stations to be projected and plotted on profiles.
Ignored if .plot_stations is set to False.

	Returns

	[figlist, savepaths]. A list containing (1) lists of Figure objects,
for further manipulation (2) corresponding paths for saving them to disk

	
get_slice(self, option='STA', coords=[], nsteps=-1, nn=1, p=4, absolute_query_locations=False, extrapolate=True)

	
	Parameters

	
	option – can be either of ‘STA’, ‘XY’ or ‘XYZ’. For ‘STA’ or ‘XY’, a vertical
profile is returned based on station coordinates or arbitrary XY
coordinates, respectively. For ‘XYZ’, interpolated values at those
coordinates are returned

	coords – Numpy array of shape (np, 2) for option=’XY’ or of shape (np, 3) for
option=’XYZ’, where np is the number of coordinates. Not used for
option=’STA’, in which case a vertical profile is created based on
station locations.

	nsteps – When option is set to ‘STA’ or ‘XY’, nsteps can be used to create a
regular grid along the profile in the horizontal direction. By default,
when nsteps=-1, the horizontal grid points are defined by station
locations or values in the XY array. This parameter is ignored for
option=’XYZ’

	nn – Number of neighbours to use for interpolation.
Nearest neighbour interpolation is returned when nn=1 (default).
When nn>1, inverse distance weighted interpolation is returned. See
link below for more details:
https://en.wikipedia.org/wiki/Inverse_distance_weighting

	p – Power parameter, which determines the relative influence of near and far
neighbours during interpolation. For p<=3, causes interpolated values to
be dominated by points far away. Larger values of p assign greater influence
to values near the interpolated point.

	absolute_query_locations – if True, query locations are shifted to be centered
on the center of station locations; default False, in which case the function
treats query locations as relative coordinates. For option=’STA’, this parameter
is ignored, since station locations are internally treated as relative
coordinates

	extrapolate – Extrapolates values (default), which can be particularly useful
for extracting values at nodes, since the field values are given
for cell-centres.

	Returns

	
	1: when option is ‘STA’ or ‘XY’

	gd, gz, gv : where gd, gz and gv are 2D grids of distance (along profile),
depth and interpolated values, respectively. The shape of the 2D grids
depend on the number of stations or the number of xy coordinates provided,
for options ‘STA’ or ‘XY’, respectively, the number of vertical model grid
points and whether regular gridding in the horizontal direction was enabled
with nsteps>-1.

	2: when option is ‘XYZ’

	gv : list of interpolated values of shape (np)

	
get_station_grid_locations(self)

	get the grid line on which a station resides for plotting

	
on_key_press(self, event)

	on a key press change the slices

	
plot(self)

	
	plot:

	east vs. vertical,
north vs. vertical,
east vs. north

	
read_files(self)

	read in the files to get appropriate information

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y')

	save_figure will save the figure to save_fn.

Create Phase Tensor Map from the ModEM’s output Resistivity model

	
class mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps(data_fn=None, resp_fn=None, model_fn=None, **kwargs)

	Plot phase tensor maps including residual pt if response file is input.

	Plot only data for one period

	>>> import mtpy.modeling.ws3dinv as ws
>>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat"
>>> ptm = ws.PlotPTMaps(data_fn=dfn, plot_period_list=[0])

	Plot data and model response

	>>> import mtpy.modeling.ws3dinv as ws
>>> dfn = r"/home/MT/ws3dinv/Inv1/WSDataFile.dat"
>>> rfn = r"/home/MT/ws3dinv/Inv1/Test_resp.00"
>>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00"
>>> ptm = ws.PlotPTMaps(data_fn=dfn, resp_fn=rfn, model_fn=mfn,
>>> ... plot_period_list=[0])
>>> # adjust colorbar
>>> ptm.cb_res_pad = 1.25
>>> ptm.redraw_plot()

Methods

	get_period_attributes(self, periodIdx, key)

	Returns, for a given period, a list of attribute values for key (e.g.

	plot(self[, period, save2file])

	Plot phase tensor maps for data and or response, each figure is of a different period.

	plot_on_axes(self, ax, m, periodIdx[, …])

	Plots phase tensors for a given period index.

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self[, save_path, fig_dpi, …])

	save_figure will save the figure to save_fn.

	write_pt_data_to_gmt(self[, period, epsg, …])

	write data to plot phase tensor ellipses in gmt.

	write_pt_data_to_text

	

	
get_period_attributes(self, periodIdx, key, ptarray='data')

	Returns, for a given period, a list of attribute values for key
(e.g. skew, phimax, etc.).

	Parameters

	
	periodIdx – index of period; print out _plot_period for periods available

	key – attribute key

	ptarray – name of data-array to access for retrieving attributes;
can be either ‘data’, ‘resp’ or ‘resid’

	Returns

	numpy array of attribute values

	
plot(self, period=0, save2file=None, **kwargs)

	Plot phase tensor maps for data and or response, each figure is of a
different period. If response is input a third column is added which is
the residual phase tensor showing where the model is not fitting the data
well. The data is plotted in km.

	Args:

	period: the period index to plot, default=0

Returns:

	
plot_on_axes(self, ax, m, periodIdx, ptarray='data', ellipse_size_factor=10000, cvals=None, map_scale='m', centre_shift=[0, 0], plot_tipper='n', tipper_size_factor=100000.0, **kwargs)

	Plots phase tensors for a given period index.

	Parameters

	
	ax – plot axis

	m – basemap instance

	periodIdx – period index

	ptarray – name of data-array to access for retrieving attributes;
can be either ‘data’, ‘resp’ or ‘resid’

	ellipse_size_factor – factor to control ellipse size

	cvals – list of colour values for colouring each ellipse; must be of
the same length as the number of tuples for each period

	map_scale – map length scale

	kwargs – list of relevant matplotlib arguments (e.g. zorder, alpha, etc.)

	plot_tipper – string (‘n’, ‘yr’, ‘yi’, or ‘yri’) to plot
no tipper, real only, imaginary only, or both

	tipper_size_factor – scaling factor for tipper vectors

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_path=None, fig_dpi=None, file_format='pdf', orientation='landscape', close_fig='y')

	save_figure will save the figure to save_fn.

	
write_pt_data_to_gmt(self, period=None, epsg=None, savepath='.', center_utm=None, colorby='phimin', attribute='data', clim=None)

	write data to plot phase tensor ellipses in gmt.
saves a gmt script and text file containing ellipse data

provide:
period to plot (seconds)
epsg for the projection the model was projected to
(google “epsg your_projection_name” and you will find it)
centre_utm - utm coordinates for centre position of model, if not

provided, script will try and extract it from data file

colorby - what to colour the ellipses by, ‘phimin’, ‘phimax’, or ‘skew’
attribute - attribute to plot ‘data’, ‘resp’, or ‘resid’ for data,

response or residuals

Generate files for ModEM

revised by JP 2017
revised by AK 2017 to bring across functionality from ak branch

	
class mtpy.modeling.modem.plot_rms_maps.PlotRMSMaps(residual_fn, **kwargs)

	plots the RMS as (data-model)/(error) in map view for all components
of the data file. Gets this infomration from the .res file output
by ModEM.

Methods

	plot(self)

	plot rms in map view

	plot_loop(self[, fig_format])

	loop over all periods and save figures accordingly

	save_figure(self[, save_path, …])

	save figure in the desired format

	read_residual_fn

	

	redraw_plot

	

	
plot(self)

	plot rms in map view

	
plot_loop(self, fig_format='png')

	loop over all periods and save figures accordingly

	
save_figure(self, save_path=None, save_fn_basename=None, save_fig_dpi=None, fig_format='png', fig_close=True)

	save figure in the desired format

Module Occam 1D

	
	Wrapper class to interact with Occam1D written by Kerry Keys at Scripps

	
adapted from the method of Constable et al., [1987].

	This class only deals with the MT functionality of the Fortran code, so
it can make the input files for computing the 1D MT response of an input
model and or data. It can also read the output and plot them in a
useful way.

	Note that when you run the inversion code, the convergence is quite
quick, within the first few iterations, so have a look at the L2 cure
to decide which iteration to plot, otherwise if you look at iterations
long after convergence the models will be unreliable.

	Key, K., 2009, 1D inversion of multicomponent, multi-frequency marine
CSEM data: Methodology and synthetic studies for resolving thin
resistive layers: Geophysics, 74, F9–F20.

	The original paper describing the Occam’s inversion approach is:

	Constable, S. C., R. L. Parker, and C. G. Constable, 1987,
Occam’s inversion –– A practical algorithm for generating smooth
models from electromagnetic sounding data, Geophysics, 52 (03), 289–300.

	Intended Use

	>>> import mtpy.modeling.occam1d as occam1d
>>> #--> make a data file
>>> d1 = occam1d.Data()
>>> d1.write_data_file(edi_file=r'/home/MT/mt01.edi', res_err=10, phase_err=2.5,
>>> ... save_path=r"/home/occam1d/mt01/TE", mode='TE')
>>> #--> make a model file
>>> m1 = occam1d.Model()
>>> m1.write_model_file(save_path=d1.save_path, target_depth=15000)
>>> #--> make a startup file
>>> s1 = occam1d.Startup()
>>> s1.data_fn = d1.data_fn
>>> s1.model_fn = m1.model_fn
>>> s1.save_path = m1.save_path
>>> s1.write_startup_file()
>>> #--> run occam1d from python
>>> occam_path = r"/home/occam1d/Occam1D_executable"
>>> occam1d.Run(s1.startup_fn, occam_path, mode='TE')
>>> #--plot the L2 curve
>>> l2 = occam1d.PlotL2(d1.save_path, m1.model_fn)
>>> #--> see that iteration 7 is the optimum model to plot
>>> p1 = occam1d.Plot1DResponse()
>>> p1.data_te_fn = d1.data_fn
>>> p1.model_fn = m1.model_fn
>>> p1.iter_te_fn = r"/home/occam1d/mt01/TE/TE_7.iter"
>>> p1.resp_te_fn = r"/home/occam1d/mt01/TE/TE_7.resp"
>>> p1.plot()

@author: J. Peacock (Oct. 2013)

	
class mtpy.modeling.occam1d.Data(data_fn=None, **kwargs)

	reads and writes occam 1D data files

	Attributes

	Description

	_data_fn

	basename of data file default is Occam1DDataFile

	_header_line

	header line for description of data columns

	_ss

	string spacing default is 6*’ ‘

	_string_fmt

	format of data default is ‘+.6e’

	data

	array of data

	data_fn

	full path to data file

	freq

	frequency array of data

	mode

	mode to invert for [‘TE’ | ‘TM’ | ‘det’]

	phase_te

	array of TE phase

	phase_tm

	array of TM phase

	res_te

	array of TE apparent resistivity

	res_tm

	array of TM apparent resistivity

	resp_fn

	full path to response file

	save_path

	path to save files to

	Methods

	Description

	write_data_file

	write an Occam1D data file

	read_data_file

	read an Occam1D data file

	read_resp_file

	read a .resp file output by Occam1D

	Example

	>>> import mtpy.modeling.occam1d as occam1d
>>> #--> make a data file for TE mode
>>> d1 = occam1d.Data()
>>> d1.write_data_file(edi_file=r'/home/MT/mt01.edi', res_err=10, phase_err=2.5,
>>> ... save_path=r"/home/occam1d/mt01/TE", mode='TE')

Methods

	read_data_file(self[, data_fn])

	reads a 1D data file

	read_resp_file(self[, resp_fn, data_fn])

	read response file

	write_data_file(self[, rp_tuple, edi_file, …])

	make1Ddatafile will write a data file for Occam1D

	
read_data_file(self, data_fn=None)

	reads a 1D data file

	
read_resp_file(self, resp_fn=None, data_fn=None)

	
read response file

resp_fn : full path to response file

data_fn : full path to data file

	
write_data_file(self, rp_tuple=None, edi_file=None, save_path=None, mode='det', res_err='data', phase_err='data', thetar=0, res_errorfloor=0.0, phase_errorfloor=0.0, z_errorfloor=0.0, remove_outofquadrant=False)

	make1Ddatafile will write a data file for Occam1D

	rp_tuplenp.ndarray (freq, res, res_err, phase, phase_err)

	with res, phase having shape (num_freq, 2, 2).

	edi_filestring

	full path to edi file to be modeled.

	save_pathstring

	path to save the file, if None set to dirname of
station if edipath = None. Otherwise set to
dirname of edipath.

	thetarfloat

	rotation angle to rotate Z. Clockwise positive and N=0
default = 0

	mode[‘te’ | ‘tm’ | ‘det’]

	
	mode to model can be (*default*=’both’):

	
	‘te’ for just TE mode (res/phase)

	‘tm’ for just TM mode (res/phase)

	
	‘det’ for the determinant of Z (converted to

	res/phase)

add ‘z’ to any of these options to model
impedance tensor values instead of res/phase

	res_errfloat

	errorbar for resistivity values. Can be set to (
default = ‘data’):

	‘data’ for errorbars from the data

	percent number ex. 10 for ten percent

	phase_errfloat

	errorbar for phase values. Can be set to (
default = ‘data’):

	‘data’ for errorbars from the data

	percent number ex. 10 for ten percent

	res_errorfloor: float

	error floor for resistivity values
in percent

	phase_errorfloor: float

	error floor for phase in degrees

	remove_outofquadrant: True/False; option to remove the resistivity and

	phase values for points with phases out
of the 1st/3rd quadrant (occam requires
0 < phase < 90 degrees; phases in the 3rd
quadrant are shifted to the first by
adding 180 degrees)

	Example

	>>> import mtpy.modeling.occam1d as occam1d
>>> #--> make a data file
>>> d1 = occam1d.Data()
>>> d1.write_data_file(edi_file=r'/home/MT/mt01.edi', res_err=10,
>>> ... phase_err=2.5, mode='TE',
>>> ... save_path=r"/home/occam1d/mt01/TE")

	
class mtpy.modeling.occam1d.Model(model_fn=None, **kwargs)

	read and write the model file fo Occam1D

All depth measurements are in meters.

	Attributes

	Description

	_model_fn

	basename for model file default is Model1D

	_ss

	string spacing in model file default is 3*’ ‘

	_string_fmt

	format of model layers default is ‘.0f’

	air_layer_height

	height of air layer default is 10000

	bottom_layer

	bottom of the model default is 50000

	itdict

	dictionary of values from iteration file

	iter_fn

	full path to iteration file

	model_depth

	array of model depths

	model_fn

	full path to model file

	model_penalty

	array of penalties for each model layer

	model_preference_penalty

	array of model preference penalties for each layer

	model_prefernce

	array of preferences for each layer

	model_res

	array of resistivities for each layer

	n_layers

	number of layers in the model

	num_params

	number of parameters to invert for (n_layers+2)

	pad_z

	padding of model at depth default is 5 blocks

	save_path

	path to save files

	target_depth

	depth of target to investigate

	z1_layer

	depth of first layer default is 10

	Methods

	Description

	write_model_file

	write an Occam1D model file, where depth increases
on a logarithmic scale

	read_model_file

	read an Occam1D model file

	read_iter_file

	read an .iter file output by Occam1D

	Example

	>>> #--> make a model file
>>> m1 = occam1d.Model()
>>> m1.write_model_file(save_path=r"/home/occam1d/mt01/TE")

Methods

	read_iter_file(self[, iter_fn, model_fn])

	read an 1D iteration file

	read_model_file(self[, model_fn])

	will read in model 1D file

	write_model_file(self[, save_path])

	Makes a 1D model file for Occam1D.

	
read_iter_file(self, iter_fn=None, model_fn=None)

	read an 1D iteration file

	
read_model_file(self, model_fn=None)

	will read in model 1D file

	
write_model_file(self, save_path=None, **kwargs)

	Makes a 1D model file for Occam1D.

	
class mtpy.modeling.occam1d.Plot1DResponse(data_te_fn=None, data_tm_fn=None, model_fn=None, resp_te_fn=None, resp_tm_fn=None, iter_te_fn=None, iter_tm_fn=None, **kwargs)

	plot the 1D response and model. Plots apparent resisitivity and phase
in different subplots with the model on the far right. You can plot both
TE and TM modes together along with different iterations of the model.
These will be plotted in different colors or shades of gray depneng on
color_scale.

	Example

	>>> import mtpy.modeling.occam1d as occam1d
>>> p1 = occam1d.Plot1DResponse(plot_yn='n')
>>> p1.data_te_fn = r"/home/occam1d/mt01/TE/Occam_DataFile_TE.dat"
>>> p1.data_tm_fn = r"/home/occam1d/mt01/TM/Occam_DataFile_TM.dat"
>>> p1.model_fn = r"/home/occam1d/mt01/TE/Model1D"
>>> p1.iter_te_fn = [r"/home/occam1d/mt01/TE/TE_{0}.iter".format(ii)
>>> ... for ii in range(5,10)]
>>> p1.iter_tm_fn = [r"/home/occam1d/mt01/TM/TM_{0}.iter".format(ii)
>>> ... for ii in range(5,10)]
>>> p1.resp_te_fn = [r"/home/occam1d/mt01/TE/TE_{0}.resp".format(ii)
>>> ... for ii in range(5,10)]
>>> p1.resp_tm_fn = [r"/home/occam1d/mt01/TM/TM_{0}.resp".format(ii)
>>> ... for ii in range(5,10)]
>>> p1.plot()

	Attributes

	Description

	axm

	matplotlib.axes instance for model subplot

	axp

	matplotlib.axes instance for phase subplot

	axr

	matplotlib.axes instance for app. res subplot

	color_mode

	[‘color’ | ‘bw’]

	cted

	color of TE data markers

	ctem

	color of TM data markers

	ctmd

	color of TE model markers

	ctmm

	color of TM model markers

	data_te_fn

	full path to data file for TE mode

	data_tm_fn

	full path to data file for TM mode

	depth_limits

	(min, max) limits for depth plot in depth_units

	depth_scale

	[‘log’ | ‘linear’] default is linear

	depth_units

	[‘m’ | ‘km’] *default is ‘km’

	e_capsize

	capsize of error bars

	e_capthick

	cap thickness of error bars

	fig

	matplotlib.figure instance for plot

	fig_dpi

	resolution in dots-per-inch for figure

	fig_num

	number of figure instance

	fig_size

	size of figure in inches [width, height]

	font_size

	size of axes tick labels, axes labels are +2

	grid_alpha

	transparency of grid

	grid_color

	color of grid

	iter_te_fn

	full path or list of .iter files for TE mode

	iter_tm_fn

	full path or list of .iter files for TM mode

	lw

	width of lines for model

	model_fn

	full path to model file

	ms

	marker size

	mted

	marker for TE data

	mtem

	marker for TM data

	mtmd

	marker for TE model

	mtmm

	marker for TM model

	phase_limits

	(min, max) limits on phase in degrees

	phase_major_ticks

	spacing for major ticks in phase

	phase_minor_ticks

	spacing for minor ticks in phase

	plot_yn

	[‘y’ | ‘n’] plot on instantiation

	res_limits

	limits of resistivity in linear scale

	resp_te_fn

	full path or list of .resp files for TE mode

	resp_tm_fn

	full path or list of .iter files for TM mode

	subplot_bottom

	spacing of subplots from bottom of figure

	subplot_hspace

	height spacing between subplots

	subplot_left

	spacing of subplots from left of figure

	subplot_right

	spacing of subplots from right of figure

	subplot_top

	spacing of subplots from top of figure

	subplot_wspace

	width spacing between subplots

	title_str

	title of plot

Methods

	plot(self)

	plot data, response and model

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self, fig)

	update any parameters that where changed using the built-in draw from canvas.

	
plot(self)

	plot data, response and model

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self, fig)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.modeling.occam2d as occam2d
>>> dfn = r"/home/occam2d/Inv1/data.dat"
>>> ocd = occam2d.Occam2DData(dfn)
>>> ps1 = ocd.plotAllResponses()
>>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]]
>>> ps1.update_plot()

	
class mtpy.modeling.occam1d.PlotL2(dir_path, model_fn, **kwargs)

	plot L2 curve of iteration vs rms and roughness

Methods

	plot(self)

	plot L2 curve

	redraw_plot(self)

	redraw plot if parameters were changed

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	
plot(self)

	plot L2 curve

	
redraw_plot(self)

	redraw plot if parameters were changed

use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.modeling.occam2d as occam2d
>>> ocd = occam2d.Occam2DData(r"/home/occam2d/Data.dat")
>>> p1 = ocd.plotAllResponses()
>>> #change line width
>>> p1.lw = 2
>>> p1.redraw_plot()

	
save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_fig='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.modeling.occam2d as occam2d
>>> dfn = r"/home/occam2d/Inv1/data.dat"
>>> ocd = occam2d.Occam2DData(dfn)
>>> ps1 = ocd.plotAllResponses()
>>> [ax.grid(True, which='major') for ax in [ps1.axrte,ps1.axtep]]
>>> ps1.update_plot()

	
class mtpy.modeling.occam1d.Run(startup_fn=None, occam_path=None, **kwargs)

	run occam 1d from python given the correct files and location of occam1d
executable

Methods

	run_occam1d

	

	
class mtpy.modeling.occam1d.Startup(data_fn=None, model_fn=None, **kwargs)

	read and write input files for Occam1D

	Attributes

	Description

	_ss

	string spacing

	_startup_fn

	basename of startup file default is OccamStartup1D

	data_fn

	full path to data file

	debug_level

	debug level default is 1

	description

	description of inversion for your self
default is 1D_Occam_Inv

	max_iter

	maximum number of iterations default is 20

	model_fn

	full path to model file

	rough_type

	roughness type default is 1

	save_path

	full path to save files to

	start_iter

	first iteration number default is 0

	start_lagrange

	starting lagrange number on log scale
default is 5

	start_misfit

	starting misfit value default is 100

	start_rho

	starting resistivity value (halfspace) in log scale
default is 100

	start_rough

	starting roughness (ignored by Occam1D)
default is 1E7

	startup_fn

	full path to startup file

	target_rms

	target rms default is 1.0

Methods

	read_startup_file(self, startup_fn)

	reads in a 1D input file

	write_startup_file(self[, save_path])

	Make a 1D input file for Occam 1D

	
read_startup_file(self, startup_fn)

	reads in a 1D input file

inputfn : full path to input file

	
write_startup_file(self, save_path=None, **kwargs)

	Make a 1D input file for Occam 1D

	savepathfull path to save input file to, if just path then

	saved as savepath/input

	model_fnfull path to model file, if None then assumed to be in

	savepath/model.mod

	data_fnfull path to data file, if None then assumed to be

	in savepath/TE.dat or TM.dat

rough_type : roughness type. default = 0

max_iter : maximum number of iterations. default = 20

target_rms : target rms value. default = 1.0

	start_rhostarting resistivity value on linear scale.

	default = 100

description : description of the inversion.

	start_lagrangestarting Lagrange multiplier for smoothness.

	default = 5

start_rough : starting roughness value. default = 1E7

	debuglevelsomething to do with how Fortran debuggs the code

	Almost always leave at default = 1

	start_iterthe starting iteration number, handy if the

	starting model is from a previous run.
default = 0

start_misfit : starting misfit value. default = 100

	
mtpy.modeling.occam1d.build_run()

	build input files and run a suite of models in series (pretty quick so won’t bother parallelise)

run Occam1d on each set of inputs.
Occam is run twice. First to get the lowest possible misfit.
we then set the target rms to a factor (default 1.05) times the minimum rms achieved
and run to get the smoothest model.

author: Alison Kirkby (2016)

	
mtpy.modeling.occam1d.divide_inputs(work_to_do, size)

	divide list of inputs into chunks to send to each processor

	
mtpy.modeling.occam1d.generate_inputfiles(**input_parameters)

	generate all the input files to run occam1d, return the path and the
startup files to run.

author: Alison Kirkby (2016)

	
mtpy.modeling.occam1d.get_strike(mt_object, fmin, fmax, strike_approx=0)

	get the strike from the z array, choosing the strike angle that is closest
to the azimuth of the PT ellipse (PT strike).

if there is not strike available from the z array use the PT strike.

	
mtpy.modeling.occam1d.parse_arguments(arguments)

	takes list of command line arguments obtained by passing in sys.argv
reads these and returns a parser object

author: Alison Kirkby (2016)

	
mtpy.modeling.occam1d.update_inputs()

	update input parameters from command line

author: Alison Kirkby (2016)

Module Occam 2D

Spin-off from ‘occamtools’
(Created August 2011, re-written August 2013)

Tools for Occam2D

authors: JP/LK

	Classes:

	
	Data

	Model

	Setup

	Run

	Plot

	Mask

	Functions:

	
	getdatetime

	makestartfiles

	writemeshfile

	writemodelfile

	writestartupfile

	read_datafile

	get_model_setup

	blocks_elements_setup

	
class mtpy.modeling.occam2d_rewrite.Data(edi_path=None, **kwargs)

	Reads and writes data files and more.

Inherets Profile, so the intended use is to use Data to project stations
onto a profile, then write the data file.

	Model Modes

	Description

	1 or log_all

	Log resistivity of TE and TM plus Tipper

	2 or log_te_tip

	Log resistivity of TE plus Tipper

	3 or log_tm_tip

	Log resistivity of TM plus Tipper

	4 or log_te_tm

	Log resistivity of TE and TM

	5 or log_te

	Log resistivity of TE

	6 or log_tm

	Log resistivity of TM

	7 or all

	TE, TM and Tipper

	8 or te_tip

	TE plus Tipper

	9 or tm_tip

	TM plus Tipper

	10 or te_tm

	TE and TM mode

	11 or te

	TE mode

	12 or tm

	TM mode

	13 or tip

	Only Tipper

	datais a list of dictioinaries containing the data for each station.

	
	keys include:

	
	‘station’ – name of station

	‘offset’ – profile line offset

	‘te_res’ – TE resisitivity in linear scale

	‘tm_res’ – TM resistivity in linear scale

	‘te_phase’ – TE phase in degrees

	‘tm_phase’ – TM phase in degrees in first quadrant

	‘re_tip’ – real part of tipper along profile

	‘im_tip’ – imaginary part of tipper along profile

each key is a np.ndarray(2, num_freq)
index 0 is for data
index 1 is for error

	Key Words/Attributes

	Desctription

	_data_header

	header line in data file

	_data_string

	full data string

	_profile_generated

	[True | False] True if profile has already been
generated.

	_rotate_to_strike

	[True | False] True to rotate data to strike
angle. default is True

	data

	list of dictionaries of data for each station.
see above

	data_fn

	full path to data file

	data_list

	list of lines to write to data file

	edi_list

	list of mtpy.core.mt instances for each .edi file
read

	edi_path

	directory path where .edi files are

	edi_type

	[‘z’ | ‘spectra’] for .edi format

	elevation_model

	model elevation np.ndarray(east, north, elevation)
in meters

	elevation_profile

	elevation along profile np.ndarray (x, elev) (m)

	fn_basename

	data file basename default is OccamDataFile.dat

	freq

	list of frequencies to use for the inversion

	freq_max

	max frequency to use in inversion. default is None

	freq_min

	min frequency to use in inversion. default is None

	freq_num

	number of frequencies to use in inversion

	geoelectric_strike

	geoelectric strike angle assuming N = 0, E = 90

	masked_data

	similar to data, but any masked points are now 0

	mode_dict

	dictionary of model modes to chose from

	model_mode

	model mode to use for inversion, see above

	num_edi

	number of stations to invert for

	occam_dict

	dictionary of occam parameters to use internally

	occam_format

	occam format of data file.
default is OCCAM2MTDATA_1.0

	phase_te_err

	percent error in phase for TE mode. default is 5

	phase_tm_err

	percent error in phase for TM mode. default is 5

	profile_angle

	angle of profile line realtive to N = 0, E = 90

	profile_line

	m, b coefficients for mx+b definition of profile line

	res_te_err

	percent error in resistivity for TE mode.
default is 10

	res_tm_err

	percent error in resistivity for TM mode.
default is 10

	error_type

	‘floor’ or ‘absolute’ - option to set error as floor
(i.e. maximum of the data error and a specified value)
or a straight value

	save_path

	directory to save files to

	station_list

	list of station for inversion

	station_locations

	station locations along profile line

	tipper_err

	percent error in tipper. default is 5

	title

	title in data file.

	Methods

	Description

	_fill_data

	fills the data array that is described above

	_get_data_list

	gets the lines to write to data file

	_get_frequencies

	gets frequency list to invert for

	get_profile_origin

	get profile origin in UTM coordinates

	mask_points

	masks points in data picked from
plot_mask_points

	plot_mask_points

	plots data responses to interactively mask
data points.

	plot_resonse

	plots data/model responses, returns
PlotResponse data type.

	read_data_file

	read in existing data file and fill appropriate
attributes.

	write_data_file

	write a data file according to Data attributes

	Example Write Data File

	::
>>> import mtpy.modeling.occam2d as occam2d
>>> edipath = r”/home/mt/edi_files”
>>> slst = [‘mt{0:03}’.format(ss) for ss in range(1, 20)]
>>> ocd = occam2d.Data(edi_path=edipath, station_list=slst)
>>> # model just the tm mode and tipper
>>> ocd.model_mode = 3
>>> ocd.save_path = r”/home/occam/Line1/Inv1”
>>> ocd.write_data_file()
>>> # mask points
>>> ocd.plot_mask_points()
>>> ocd.mask_points()

Methods

	generate_profile(self)

	Generate linear profile by regression of station locations.

	get_profile_origin(self)

	get the origin of the profile in real world coordinates

	mask_from_datafile(self, mask_datafn)

	reads a separate data file and applies mask from this data file.

	mask_points(self, maskpoints_obj)

	mask points and rewrite the data file

	plot_mask_points(self[, data_fn, marker, …])

	An interactive plotting tool to mask points an add errorbars

	plot_profile(self, **kwargs)

	Plot the projected profile line along with original station locations to make sure the line projected is correct.

	plot_response(self, **kwargs)

	plot data and model responses as apparent resistivity, phase and tipper.

	project_elevation(self[, elevation_model])

	projects elevation data into the profile

	read_data_file(self[, data_fn])

	Read in an existing data file and populate appropriate attributes

	write_data_file(self[, data_fn])

	Write a data file.

	
get_profile_origin(self)

	get the origin of the profile in real world coordinates

Author: Alison Kirkby (2013)

NEED TO ADAPT THIS TO THE CURRENT SETUP.

	
mask_from_datafile(self, mask_datafn)

	reads a separate data file and applies mask from this data file.
mask_datafn needs to have exactly the same frequencies, and station names
must match exactly.

	
mask_points(self, maskpoints_obj)

	mask points and rewrite the data file

NEED TO REDO THIS TO FIT THE CURRENT SETUP

	
plot_mask_points(self, data_fn=None, marker='h', res_err_inc=0.25, phase_err_inc=0.05)

	An interactive plotting tool to mask points an add errorbars

	
plot_response(self, **kwargs)

	plot data and model responses as apparent resistivity, phase and
tipper. See PlotResponse for key words.

	
read_data_file(self, data_fn=None)

	
	Read in an existing data file and populate appropriate attributes

	
	data

	data_list

	freq

	station_list

	station_locations

	
write_data_file(self, data_fn=None)

	Write a data file.

	
class mtpy.modeling.occam2d_rewrite.Mask(edi_path=None, **kwargs)

	Allow masking of points from data file (effectively commenting them out,
so the process is reversable). Inheriting from Data class.

Methods

	generate_profile(self)

	Generate linear profile by regression of station locations.

	get_profile_origin(self)

	get the origin of the profile in real world coordinates

	mask_from_datafile(self, mask_datafn)

	reads a separate data file and applies mask from this data file.

	mask_points(self, maskpoints_obj)

	mask points and rewrite the data file

	plot_mask_points(self[, data_fn, marker, …])

	An interactive plotting tool to mask points an add errorbars

	plot_profile(self, **kwargs)

	Plot the projected profile line along with original station locations to make sure the line projected is correct.

	plot_response(self, **kwargs)

	plot data and model responses as apparent resistivity, phase and tipper.

	project_elevation(self[, elevation_model])

	projects elevation data into the profile

	read_data_file(self[, data_fn])

	Read in an existing data file and populate appropriate attributes

	write_data_file(self[, data_fn])

	Write a data file.

	
class mtpy.modeling.occam2d_rewrite.Mesh(station_locations=None, **kwargs)

	deals only with the finite element mesh. Builds a finite element mesh
based on given parameters defined below. The mesh reads in the station
locations, finds the center and makes the relative location of the
furthest left hand station 0. The mesh increases in depth logarithmically
as required by the physics of MT. Also, the model extends horizontally
and vertically with padding cells in order to fullfill the assumption of
the forward operator that at the edges the structure is 1D. Stations are
place on the horizontal nodes as required by Wannamaker’s forward
operator.

Mesh has the ability to create a mesh that incorporates topography given
a elevation profile. It adds more cells to the mesh with thickness
z1_layer. It then sets the values of the triangular elements according to
the elevation value at that location. If the elevation covers less than
50% of the triangular cell, then the cell value is set to that of air

Note

Mesh is inhereted by Regularization, so the mesh can also be
be built from there, same as the example below.

Methods

	add_elevation(self[, elevation_profile])

	the elevation model needs to be in relative coordinates and be a numpy.ndarray(2, num_elevation_points) where the first column is the horizontal location and the second column is the elevation at that location.

	build_mesh(self)

	Build the finite element mesh given the parameters defined by the attributes of Mesh.

	plot_mesh(self, **kwargs)

	Plot built mesh with station locations.

	read_mesh_file(self, mesh_fn)

	reads an occam2d 2D mesh file

	write_mesh_file(self[, save_path, basename])

	Write a finite element mesh file.

	
add_elevation(self, elevation_profile=None)

	the elevation model needs to be in relative coordinates and be a
numpy.ndarray(2, num_elevation_points) where the first column is
the horizontal location and the second column is the elevation at
that location.

If you have a elevation model use Profile to project the elevation
information onto the profile line

To build the elevation I’m going to add the elevation to the top
of the model which will add cells to the mesh. there might be a better
way to do this, but this is the first attempt. So I’m going to assume
that the first layer of the mesh without elevation is the minimum
elevation and blocks will be added to max elevation at an increment
according to z1_layer

Note

the elevation model should be symmetrical ie, starting
at the first station and ending on the last station, so for
now any elevation outside the station area will be ignored
and set to the elevation of the station at the extremities.
This is not ideal but works for now.

	
build_mesh(self)

	Build the finite element mesh given the parameters defined by the
attributes of Mesh. Computes relative station locations by finding
the center of the station area and setting the middle to 0. Mesh
blocks are built by calculating the distance between stations and
putting evenly spaced blocks between the stations being close to
cell_width. This places a horizontal node at the station location.
If the spacing between stations is smaller than
cell_width, a horizontal node is placed between the stations to be
sure the model has room to change between the station.

If elevation_profile is given, add_elevation is called to add
topography into the mesh.

	Populates attributes:

	
	mesh_values

	rel_station_locations

	x_grid

	x_nodes

	z_grid

	z_nodes

	Example

	::
>>> import mtpy.modeling.occam2d as occcam2d
>>> edipath = r”/home/mt/edi_files”
>>> slist = [‘mt{0:03}’.format(ss) for ss in range(20)]
>>> ocd = occam2d.Data(edi_path=edipath, station_list=slist)
>>> ocd.save_path = r”/home/occam/Line1/Inv1”
>>> ocd.write_data_file()
>>> ocm = occam2d.Mesh(ocd.station_locations)
>>> # add in elevation
>>> ocm.elevation_profile = ocd.elevation_profile
>>> # change number of layers
>>> ocm.n_layers = 110
>>> # change cell width in station area
>>> ocm.cell_width = 200
>>> ocm.build_mesh()

	
plot_mesh(self, **kwargs)

	Plot built mesh with station locations.

	Key Words

	Description

	depth_scale

	[‘km’ | ‘m’] scale of mesh plot.
default is ‘km’

	fig_dpi

	dots-per-inch resolution of the figure
default is 300

	fig_num

	number of the figure instance
default is ‘Mesh’

	fig_size

	size of figure in inches (width, height)
default is [5, 5]

	fs

	size of font of axis tick labels, axis labels are
fs+2. default is 6

	ls

	[‘-‘ | ‘.’ | ‘:’] line style of mesh lines
default is ‘-‘

	marker

	marker of stations
default

 Package Imaging

Package Imaging

Penetration Depth

	Description:

	For a given input edi file, plot the Penetration Depth vs all the periods (1/freq).
Or input a directory of edi multi-files (*.edi), the program will loop to plot
the penetration depth profile for each edi.

Author: fei.zhang@ga.gov.au
Date: 2017-01-23

	
mtpy.imaging.penetration_depth1d.plot_edi_dir(edi_path, rholist=['zxy', 'zyx', 'det'], fig_dpi=400, savefile=None)

	plot edi files from the input directory edi_path

	
mtpy.imaging.penetration_depth1d.plot_edi_file(edifile, rholist=['zxy', 'zyx', 'det'], savefile=None, fig_dpi=400)

	Plot the input edi_file
Args:

edi_file: path2edifile
rholist: a list of the rho to be used.
savefile: path2savefig, not save if None

Returns:

	Description:

	With an input edi_file_folder and a list of period index,
generate a profile using occam2d module,
then plot the Penetration Depth profile at the given periods vs the stations locations.

	Usage:

	python mtpy/imaging/penetration_depth2d.py /path2/edi_files_dir/ period_index_list
python mtpy/imaging/penetration_depth2d.py.py examples/data/edi2/ 0 1 10 20 30 40

Author: fei.zhang@ga.gov.au
Date: 2017-01-23

	
mtpy.imaging.penetration_depth2d.barplot_multi_station_penentration_depth(edifiles_dir, per_index=0, zcomponent='det')

	A simple bar chart plot of the penetration depth across multiple edi files (stations),
at the given (frequency) per_index. No profile-projection is done in this funciton.
:param edifiles_dir: a list of edi files, or a dir of edi
:param per_index: an integer smaller than the number of MT frequencies in the edi files.
:return:

	Description:

	Given a set of EDI files plot the Penetration Depth vs the station_location.
Note that the values of periods within10% tolerance (ptol=0.1) are considered as equal.
Setting a smaller value for ptol(=0.05) may result less MT sites data included.

	Usage:

	python mtpy/imaging/penetration_depth3d.py /path2/edi_files_dir/ period_index

Author: fei.zhang@ga.gov.au
Date: 2017-01-23

	
mtpy.imaging.penetration_depth3d.create_csv_file(edi_dir, outputcsv=None, zcomponent='det')

	Loop over all edi files, and create a csv file with columns:
lat, lon, pendepth0, pendepth1, …
:param edi_dir: path_to_edifiles_dir
:param zcomponent: det | zxy | zyx
:param outputcsv: path2output.csv file
:return:

	
mtpy.imaging.penetration_depth3d.create_shapefile(edi_dir, outputfile=None, zcomponent='det')

	create a shapefile for station, penetration_depths
:param edi_dir:
:param outputfile:
:param zcomponent:
:return:

	
mtpy.imaging.penetration_depth3d.get_index2(*args, **kwargs)

	Mapping of lat lon to a grid
:param lat:
:param lon:
:param ref_lon:
:param ref_lat:
:param pixelsize:
:return:

	
mtpy.imaging.penetration_depth3d.get_penetration_depths_from_edi_file(edifile, rholist=['det'])

	Compute the penetration depths of an edi file
:param edifile: input edifile
:param rholist: flag the method to compute penetration depth: det zxy zyx
:return: a tuple:(station_lat, statoin_lon, periods_list, pendepth_list)

	
mtpy.imaging.penetration_depth3d.plot_bar3d_depth(edifiles, per_index, whichrho='det')

	plot 3D bar of penetration depths
For a given freq/period index of a set of edifiles/dir,
the station,periods, pendepth,(lat, lon) are extracted
the geo-bounding box calculated, and the mapping from stations to grids
is constructed and plotted.

	Parameters

	
	whichrho – z component either ‘det’, ‘zxy’ or ‘zyx’

	edifiles – an edi_dir or list of edi_files

	per_index – period index number 0,1,2

	Returns

	

	
mtpy.imaging.penetration_depth3d.plot_latlon_depth_profile(edi_dir, period, zcomponent='det', showfig=True, savefig=True, savepath=None, fig_dpi=400, fontsize=14, file_format='png', ptol=0.1)

	MT penetration depth profile in lat-lon coordinates with pixelsize = 0.002
:param savefig:
:param showfig:
:param edi_dir:
:param period:
:param zcomponent:
:return:

	
mtpy.imaging.penetration_depth3d.reverse_colourmap(*args, **kwargs)

	In: cmap, name
Out: my_cmap_r

Explanation: http://stackoverflow.com/questions/3279560/invert-colormap-in-matplotlib

	Description:

	This file defines imaging functions for penetration.
The plotting function are extracted and implemented in plot() of each class from penetration_depth1D.py,
penetration_depth2D.py and penetration_depth3D.py

	Usage:

	see descriptions of each clases

Author: YingzhiGou
Date: 20/06/2017

	
class mtpy.imaging.penetration.Depth1D(edis=None, rholist=set(['det', 'zxy', 'zyx']))

	Description:
For a given input MT object, plot the Penetration Depth vs all the periods (1/freq).

	Attributes

	
	data

	the data (mt objects) that are to be plotted

	fig

	matplotlib fig object

Methods

	close(self)

	close the figure :return:

	show(self[, block])

	display the image :return:

	export_image

	

	get_data

	

	get_figure

	

	plot

	

	set_data

	

	set_rholist

	

	
class mtpy.imaging.penetration.Depth2D(data=None, period_index_list=None, rho='det')

	With a list of MT object and a list of period index,
generate a profile using occam2d module,
then plot the Penetration Depth profile at the given periods vs the stations locations.

	Attributes

	
	data

	the data (mt objects) that are to be plotted

	fig

	matplotlib fig object

Methods

	close(self)

	close the figure :return:

	show(self[, block])

	display the image :return:

	export_image

	

	get_data

	

	get_figure

	

	plot

	

	set_data

	

	set_period_index_list

	

	set_rho

	

	
class mtpy.imaging.penetration.Depth3D(edis=None, period=None, rho='det', ptol=0.1)

	For a set of EDI files (input as a list of MT objects),
plot the Penetration Depth vs the station_location,
for a given period value or index
Note that the values of periods within tolerance (ptol=0.1) are considered as equal.
Setting a smaller value for ptol may result less MT sites data included.

	Attributes

	
	data

	the data (mt objects) that are to be plotted

	fig

	matplotlib fig object

Methods

	close(self)

	close the figure :return:

	show(self[, block])

	display the image :return:

	export_image

	

	get_data

	

	get_figure

	

	get_period_fmt

	

	plot

	

	set_data

	

	set_period

	

	set_rho

	

	
exception mtpy.imaging.penetration.ZComponentError(*args, **kwargs)

	

	
mtpy.imaging.penetration.check_period_values(period_list, ptol=0.1)

	check if all the values are equal in the input list
:param period_list: a list of period
:param ptol=0.1 # 1% percentage tolerance of period values considered as equal
:return: True/False

	
mtpy.imaging.penetration.get_bounding_box(latlons)

	get min max lat lon from the list of lat-lon-pairs points

	
mtpy.imaging.penetration.get_index(lat, lon, minlat, minlon, pixelsize, offset=0)

	compute the grid index from the lat lon float value
:param lat: float lat
:param lon: float lon
:param minlat: min lat at low left corner
:param minlon: min long at left
:param pixelsize: pixel size in lat long degree
:param offset: a shift of grid index. should be =0.
:return: a paire of integer

	
mtpy.imaging.penetration.get_penetration_depth(mt_obj_list, per_index, whichrho='det')

	compute the penetration depth of mt_obj at the given period_index, and using whichrho option
:param per_index: the index of periods 0, 1, …
:param mt_obj_list: list of edi file paths or mt objects
:param whichrho: det, zxy, or zyx
:return:

	
mtpy.imaging.penetration.get_penetration_depth_generic(edi_file_list, period_sec, whichrho='det', ptol=0.1)

	This is a more generic and useful function to compute the penetration depths
of a list of edi files at given period_sec (seconds).
No assumption is made about the edi files period list.
A tolerance of 10% is used to identify the relevant edi files which contain the period of interest.

	Parameters

	
	ptol – freq error/tolerance, need to be consistent with phase_tensor_map.py, default is 0.1

	edi_file_list – edi file list of mt object list

	period_sec – the float number value of the period in second: 0.1, …20.0

	whichrho –

	Returns

	tuple of (stations, periods, penetrationdepth, lat-lons-pairs)

	Description:

	Plots resistivity and phase maps for a given frequency

References:

CreationDate: 4/19/18
Developer: rakib.hassan@ga.gov.au

	Revision History:

	LastUpdate: 4/19/18 RH

	
class mtpy.imaging.plot_resphase_maps.PlotResPhaseMaps(**kwargs)

	Plots apparent resistivity and phase in map view from a list of edi files

Methods

	plot(self, freq, type, vmin, vmax[, …])

	
	param freq

	plot frequency

	
plot(self, freq, type, vmin, vmax, extrapolation_buffer_degrees=1, regular_grid_nx=100, regular_grid_ny=100, nn=7, p=4, show_stations=True, show_station_names=False, save_path='/home/docs/checkouts/readthedocs.org/user_builds/mtpy2/checkouts/stable/docs/source', file_ext='png', cmap='rainbow', show=True)

	
	Parameters

	
	freq – plot frequency

	type – plot type; can be either ‘res’ or ‘phase’

	vmin – minimum value used in color-mapping

	vmax – maximum value used in color-mapping

	extrapolation_buffer_degrees – extrapolation buffer in degrees

	regular_grid_nx – number of longitudinal grid points to use during interpolation

	regular_grid_ny – number of latitudinal grid points to use during interpolation

	nn – number of nearest neighbours to use in inverse distance weighted interpolation

	p – power parameter in inverse distance weighted interpolation

	save_path – path where plot is saved

	file_ext – file extension

	show – boolean to toggle display of plot

	Returns

	fig object

Module Plot Phase Tensor Maps

Plot phase tensor map in Lat-Lon Coordinate System

	Revision History:

	Created by @author: jpeacock-pr on Thu May 30 18:20:04 2013
Modified by Fei.Zhang@ga.gov.au 2017-03:

	
class mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps(**kwargs)

	Plots phase tensor ellipses in map view from a list of edi files

	Attributes

	
	rot_z

	rotation angle(s)

Methods

	export_params_to_file(self[, save_path])

	write text files for all the phase tensor parameters.

	plot(self[, fig, save_path, show, raster_dict])

	Plots the phase tensor map.

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	
export_params_to_file(self, save_path=None)

	write text files for all the phase tensor parameters.
:param save_path: string path to save files into.
File naming pattern is like save_path/PhaseTensorTipper_Params_freq.csv/table
**Files Content **

*station
*lon
*lat
*phi_min
*phi_max
*skew
*ellipticity
*azimuth
*tipper_mag_real
*tipper_ang_real
*tipper_mag_imag
*tipper_ang_imag

	Returns

	path2savedfile

	
plot(self, fig=None, save_path=None, show=True, raster_dict={'cbar_title': 'Arbitrary units', 'lats': [], 'levels': 50, 'cbar_position': None, 'cmap': 'rainbow', 'vals': [], 'lons': []})

	Plots the phase tensor map.
:param fig: optional figure object
:param save_path: path to folder for saving plots
:param show: show plots if True
:param raster_dict: Plotting of raster data is currently only supported when mapscale=’deg’.

This parameter is a dictionary of parameters for plotting raster data,
on top of which phase tensor data are plotted. ‘lons’, ‘lats’ and ‘vals’
are one dimensional lists (or numpy arrays) for longitudes, latitudes
and corresponding values, respectively. ‘levels’, ‘cmap’ and ‘cbar_title’
are the number of levels to be used in the colormap, the colormap and its
title, respectively.

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	
rot_z

	rotation angle(s)

	
save_figure(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

Module PlotPhaseTensorPseudoSection

Created on Thu May 30 18:10:55 2013

@author: jpeacock-pr

	
class mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection(**kwargs)

	PlotPhaseTensorPseudoSection will plot the phase tensor ellipses in a
pseudo section format

	Attributes

	
	rot_z

	rotation angle(s)

Methods

	plot(self[, show])

	plots the phase tensor pseudo section.

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	save_figure(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	save_figure2(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	writeTextFiles(self[, save_path, ptol])

	This will write text files for all the phase tensor parameters

	
plot(self, show=True)

	plots the phase tensor pseudo section. See class doc string for
more details.

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change ellipse size and color map to be segmented for skew
>>> pt1.ellipse_size = 5
>>> pt1.ellipse_colorby = 'beta_seg'
>>> pt1.ellipse_cmap = 'mt_seg_bl2wh2rd'
>>> pt1.ellipse_range = (-9, 9, 3)
>>> pt1.redraw_plot()

	
rot_z

	rotation angle(s)

	
save_figure(self, save_fn, file_format='png', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
save_figure2(self, save_fn, file_format='jpg', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to be on the major ticks and gray
>>> pt1.ax.grid(True, which='major', color=(.5,.5,.5))
>>> pt1.update_plot()

	
writeTextFiles(self, save_path=None, ptol=0.1)

	This will write text files for all the phase tensor parameters

Module MTPlot

Provides

	Different plotting options to represent the MT response.

	Ability to create text files of the plots for further analysis

	Class object that contains all the important information for an MT
station.

	Functions

	Description

	plot_mt_response

	plots resistivity and phase for a single station
Options include tipper, strike and skew.

	plot_multiple_mt_responses

	plots multiple stations at once with options
of plotting in single figure, all in one
figure as subplots or all in one plot for
direct comparison.

	plot_pt

	plots the phase tensor ellipses and parameters
in one plot including strike angle, minimum
and maximum phase, skew angle and ellipticity

	plot_pt_pseudosection

	plots a pseudo section of phase
tensor ellipses assuming the
stations are along a profile line.
Options to plot induction arrows.

	plot_mt_map

	plots phase tensor ellipses in map view for
a single frequency. Options to plot
induction arrows.

	plot_strike

	plots strike angle estimated from the
invariants of the impedance tensor defined
by Weaver et al. [2000,2003], strike angle
from the phase tensor and option to plot
strike estimated from the induction arrows.

	plot_residual_pt_maps

	plots the residual phase tensor between two
surveys in map view.

	plot_residual_pt_ps

	plots the residual phase tensor between two
surveys as a pseudo section.

All plot function return plot classes where the important properties are made
attributes which can be manipulated by the user. All classes have been
written with the basic input being edi files. This was assumed to be the
standard MT response file, but turns out to be not as widely used as thought.
So the inputs can be other arrays and class objects (see MTplot doc string for
details). If you have a data file format you can create a class using the
objects in mtpy.core to create an input, otherwise contact us and we can try
to build something.

A typical use might be loading in all the .edi files in and plotting them in
different modes, like apparent resistivity and phase, phase tensor pseudo
section and strike angle.

	Example

	>>> import mtpy.imaging.mtplot as mtplot
>>> import os
>>> import matplotlib.pyplot as plt
>>> edipath = r"/home/MT/EDIfiles"
>>> #--> create a list of full paths to the edi files
>>> edilst = [os.path.join(edipath,edi) for edi in os.listdir(edipath)
>>> ... if edi.find('.edi')>0]
>>> #--> plot apparent resisitivity, phase and induction arrows
>>> rpm = mtplot.plot_multiple_mt_responses(fn_lst=edilst, plot_style='1',
>>> ... plot_tipper='yr')
>>> #--> close all the plots after done looking at them
>>> plt.close('all')
>>> #--> plot phase tensor pseudo section with induction arrows
>>> pts = mtplot.plot_pt_pseudosection(fn_lst=edilst,
>>> ... plot_tipper='yr')
>>> #--> write out the phase tensor parameter values to files
>>> pts.export_pt_params_to_file()
>>> #--> change coloring scheme to color by skew and a segmented colormap
>>> pts.ellipse_colorby = 'skew_seg'
>>> pts.ellipse_cmap = 'mt_seg_bl2wh2rd'
>>> pts.ellipse_range = (-9, 9, 3)
>>> pts.redraw_plot()

	Authors

	Lars Krieger,
Jared Peacock, and
Kent Invariarty

	Version

	0.0.1 of 2013

	
mtpy.imaging.mtplot.plot_mt_response(**kwargs)

	Plots Resistivity and phase for the different modes of the MT response. At
the moment is supports the input of an .edi file. Other formats that will
be supported are the impedance tensor and errors with an array of periods
and .j format.

The normal use is to input an .edi file, however it would seem that not
everyone uses this format, so you can input the data and put it into
arrays or objects like class mtpy.core.z.Z. Or if the data is in
resistivity and phase format they can be input as arrays or a class
mtpy.imaging.mtplot.ResPhase. Or you can put it into a class
mtpy.imaging.mtplot.MTplot.

The plot places the apparent resistivity in log scale in the top panel(s),
depending on the plot_num. The phase is below this, note that 180 degrees
has been added to the yx phase so the xy and yx phases plot in the same
quadrant. Both the resistivity and phase share the same x-axis which is in
log period, short periods on the left to long periods on the right. So
if you zoom in on the plot both plots will zoom in to the same
x-coordinates. If there is tipper information, you can plot the tipper
as a third panel at the bottom, and also shares the x-axis. The arrows are
in the convention of pointing towards a conductor. The xx and yy
components can be plotted as well, this adds two panels on the right.
Here the phase is left unwrapped. Other parameters can be added as
subplots such as strike, skew and phase tensor ellipses.

To manipulate the plot you can change any of the attributes listed below
and call redraw_plot(). If you know more aout matplotlib and want to
change axes parameters, that can be done by changing the parameters in the
axes attributes and then call update_plot(), note the plot must be open.

	
mtpy.imaging.mtplot.plot_multiple_mt_responses(**kwargs)

	plots multiple MT responses simultaneously either in single plots or in
one plot of sub-figures or in a single plot with subfigures for each
component.

	expecting only one type of input –> can be:

	fn_list : list of filenames to plot

z_object_list : list of mtpy.core.z.Z objects

res_object_list : list of mtpy.imaging.mtplot.ResPhase objects

tipper_object_list : list of mtpy.imaging.mtplot.Tipper objects

mt_object_list : list of mtpy.imaging.mtplot.MTplot objects

	
mtpy.imaging.mtplot.plot_pt(**kwargs)

	Will plot phase tensor, strike angle, min and max phase angle,
azimuth, skew, and ellipticity as subplots on one plot. It can plot
the resistivity tensor along side the phase tensor for comparison.

	
mtpy.imaging.mtplot.plot_pt_map(**kwargs)

	Plots phase tensor ellipses in map view from a list of edi files

	
mtpy.imaging.mtplot.plot_pt_pseudosection(**kwargs)

	PlotPhaseTensorPseudoSection will plot the phase tensor ellipses in a
pseudo section format

	
mtpy.imaging.mtplot.plot_residual_pt_maps(fn_list1, fn_list2, **kwargs)

	This will plot residual phase tensors in a map for a single frequency.
The data is read in and stored in 2 ways, one as a list ResidualPhaseTensor
object for each matching station and the other in a structured array with
all the important information. The structured array is the one that is
used for plotting. It is computed each time plot() is called so if it is
manipulated it is reset. The array is sorted by relative offset, so no
special order of input is needed for the file names. However, the
station names should be verbatim between surveys, otherwise it will not
work.

The residual phase tensor is calculated as I-(Phi_2)^-1 (Phi_1)

The default coloring is by the geometric mean as sqrt(Phi_min*Phi_max),
which defines the percent change between measurements.

There are a lot of parameters to change how the plot looks, have a look
below if you figure looks a little funny. The most useful will be
ellipse_size

The ellipses are normalized by the largest Phi_max of the survey.

	
mtpy.imaging.mtplot.plot_residual_pt_ps(fn_list1, fn_list2, **kwargs)

	This will plot residual phase tensors in a pseudo section. The data is
read in and stored in 2 ways, one as a list ResidualPhaseTensor object for
each matching station and the other in a structured array with all the
important information. The structured array is the one that is used for
plotting. It is computed each time plot() is called so if it is
manipulated it is reset. The array is sorted by relative offset, so no
special order of input is needed for the file names. However, the
station names should be verbatim between surveys, otherwise it will not
work.

The residual phase tensor is calculated as I-(Phi_2)^-1 (Phi_1)

The default coloring is by the geometric mean as sqrt(Phi_min*Phi_max),
which defines the percent change between measurements.

There are a lot of parameters to change how the plot looks, have a look
below if you figure looks a little funny. The most useful will be
xstretch, ystretch and ellipse_size

The ellipses are normalized by the largest Phi_max of the survey.

	
mtpy.imaging.mtplot.plot_resphase_pseudosection(**kwargs)

	plot a resistivity and phase pseudo section for different components

Need to input one of the following lists:

	
mtpy.imaging.mtplot.plot_station_locations(**kwargs)

	plot station locations in map view.

Need to input one of the following lists:

	
mtpy.imaging.mtplot.plot_strike(**kwargs)

	PlotStrike will plot the strike estimated from the invariants, phase tensor
and the tipper in either a rose diagram of xy plot

plots the strike angle as determined by phase tensor azimuth (Caldwell et
al. [2004]) and invariants of the impedance tensor (Weaver et al. [2003]).

The data is split into decades where the histogram for each is plotted in
the form of a rose diagram with a range of 0 to 180 degrees.
Where 0 is North and 90 is East. The median angle of the period band is
set in polar diagram. The top row is the strike estimated from
the invariants of the impedance tensor. The bottom row is the azimuth
estimated from the phase tensor. If tipper is ‘y’ then the 3rd row is the
strike determined from the tipper, which is orthogonal to the induction
arrow direction.

	Attributes

	
	-axhinv matplotlib.axes instance for invariant strike

	
	-axhpt

	matplotlib.axes instance for phase tensor strike

	-axhtip

	matplotlib.axes instance for tipper strike

	-barinv

	matplotlib.axes.bar instance for invariant strike

	-barpt

	matplotlib.axes.bar instance for pt strike

	-bartr

	matplotlib.axes.bar instance for tipper strike

	-bin_width

	width of histogram bins in degrees

	-fig

	matplotlib.figure instance of plot

	-fig_dpi

	dots-per-inch resolution of figure

	-fig_num

	number of figure being plotted

	-fig_size

	size of figure in inches

	-fold

	boolean to fold angles to range from [0,180] or
[0,360]

	-font_size

	font size of axes tick labels

	-mt_list

	list of mtplot.MTplot instances containing all
the important information for each station

	-period_tolerance

	tolerance to look for periods being plotted

	-plot_range

	range of periods to plot

	-plot_tipper

	string to tell program to plot induction arrows

	-plot_type

	string to tell program how to plot strike angles

	-plot_yn

	plot strike on instance creation

	-pt_error_floor

	error floor to plot phase tensor strike, anything
above this error will not be plotted

	-text_pad

	padding between text and rose diagram

	-text_size

	font size of text labeling the mode of the histogram

	-title_dict

	title dictionary

Methods

	-plot plots the pseudo section

	
	-redraw_plot

	on call redraws the plot from scratch -save_figure saves figure to a file of given format -update_plot updates the plot while still active -export_pt_params_to_file writes parameters of the phase tensor and tipper to text files.

Plots the resistivity and phase for different modes and components

Created on Thu May 30 16:54:08 2013

@author: jpeacock-pr

	
class mtpy.imaging.plotresponse.PlotResponse(**kwargs)

	Plots Resistivity and phase for the different modes of the MT response. At
the moment is supports the input of an .edi file. Other formats that will
be supported are the impedance tensor and errors with an array of periods
and .j format.

The normal use is to input an .edi file, however it would seem that not
everyone uses this format, so you can input the data and put it into
arrays or objects like class mtpy.core.z.Z. Or if the data is in
resistivity and phase format they can be input as arrays or a class
mtpy.imaging.mtplot.ResPhase. Or you can put it into a class
mtpy.imaging.mtplot.MTplot.

The plot places the apparent resistivity in log scale in the top panel(s),
depending on the plot_num. The phase is below this, note that 180 degrees
has been added to the yx phase so the xy and yx phases plot in the same
quadrant. Both the resistivity and phase share the same x-axis which is in
log period, short periods on the left to long periods on the right. So
if you zoom in on the plot both plots will zoom in to the same
x-coordinates. If there is tipper information, you can plot the tipper
as a third panel at the bottom, and also shares the x-axis. The arrows are
in the convention of pointing towards a conductor. The xx and yy
components can be plotted as well, this adds two panels on the right.
Here the phase is left unwrapped. Other parameters can be added as
subplots such as strike, skew and phase tensor ellipses.

To manipulate the plot you can change any of the attributes listed below
and call redraw_plot(). If you know more aout matplotlib and want to
change axes parameters, that can be done by changing the parameters in the
axes attributes and then call update_plot(), note the plot must be open.

	Attributes

	
	plot_pt

	string to plot phase tensor ellipses

	plot_skew

	string to plot skew

	plot_strike

	string to plot strike

	plot_tipper

	string to plot tipper

Methods

	plot(self)

	plotResPhase(filename,fig_num) will plot the apparent resistivity and phase for a single station.

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	save_plot(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	
plot(self)

	plotResPhase(filename,fig_num) will plot the apparent resistivity and
phase for a single station.

	
plot_pt

	string to plot phase tensor ellipses

	
plot_skew

	string to plot skew

	
plot_strike

	string to plot strike

	
plot_tipper

	string to plot tipper

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> p1.xy_color = (.5,.5,.9)
>>> p1.xy_marker = '*'
>>> p1.redraw_plot()

	
save_plot(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> [ax.grid(True, which='major') for ax in [p1.axr,p1.axp]]
>>> p1.update_plot()

plots multiple MT responses simultaneously

Created on Thu May 30 17:02:39 2013
@author: jpeacock-pr

YG: the code there is massey, todo may need to rewrite it sometime

	
class mtpy.imaging.plotnresponses.PlotMultipleResponses(**kwargs)

	plots multiple MT responses simultaneously either in single plots or in
one plot of sub-figures or in a single plot with subfigures for each
component.

	expecting only one type of input –> can be:

	fn_list : list of filenames to plot

z_object_list : list of mtpy.core.z.Z objects

res_object_list : list of mtpy.imaging.mtplot.ResPhase objects

tipper_object_list : list of mtpy.imaging.mtplot.Tipper objects

mt_object_list : list of mtpy.imaging.mtplot.MTplot objects

	Attributes

	
	plot_pt

	string to plot phase tensor ellipses

	plot_skew

	string to plot skew

	plot_strike

	string to plot strike

	plot_tipper

	string to plot tipper

	rot_z

	rotation angle(s)

Methods

	plot(self[, show])

	plot the apparent resistivity and phase

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	
plot(self, show=True)

	plot the apparent resistivity and phase

	
plot_pt

	string to plot phase tensor ellipses

	
plot_skew

	string to plot skew

	
plot_strike

	string to plot strike

	
plot_tipper

	string to plot tipper

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> p1.xy_color = (.5,.5,.9)
>>> p1.xy_marker = '*'
>>> p1.redraw_plot()

	
rot_z

	rotation angle(s)

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> [ax.grid(True, which='major') for ax in [p1.axr,p1.axp]]
>>> p1.update_plot()

Created on Thu May 30 18:28:24 2013

@author: jpeacock-pr

	
class mtpy.imaging.plotstrike.PlotStrike(**kwargs)

	PlotStrike will plot the strike estimated from the invariants, phase tensor
and the tipper in either a rose diagram of xy plot

plots the strike angle as determined by phase tensor azimuth (Caldwell et
al. [2004]) and invariants of the impedance tensor (Weaver et al. [2003]).

The data is split into decades where the histogram for each is plotted in
the form of a rose diagram with a range of 0 to 180 degrees.
Where 0 is North and 90 is East. The median angle of the period band is
set in polar diagram. The top row is the strike estimated from
the invariants of the impedance tensor. The bottom row is the azimuth
estimated from the phase tensor. If tipper is ‘y’ then the 3rd row is the
strike determined from the tipper, which is orthogonal to the induction
arrow direction.

	Attributes

	
	-axhinv matplotlib.axes instance for invariant strike

	
	-axhpt

	matplotlib.axes instance for phase tensor strike

	-axhtip

	matplotlib.axes instance for tipper strike

	-barinv

	matplotlib.axes.bar instance for invariant strike

	-barpt

	matplotlib.axes.bar instance for pt strike

	-bartr

	matplotlib.axes.bar instance for tipper strike

	-bin_width

	width of histogram bins in degrees

	-fig

	matplotlib.figure instance of plot

	-fig_dpi

	dots-per-inch resolution of figure

	-fig_num

	number of figure being plotted

	-fig_size

	size of figure in inches

	-fold

	boolean to fold angles to range from [0,180] or
[0,360]

	-font_size

	font size of axes tick labels

	-mt_list

	list of mtplot.MTplot instances containing all
the important information for each station

	-period_tolerance

	tolerance to look for periods being plotted

	-plot_range

	range of periods to plot

	-plot_tipper

	string to tell program to plot induction arrows

	-plot_type

	string to tell program how to plot strike angles

	-plot_yn

	plot strike on instance creation

	-pt_error_floor

	error floor to plot phase tensor strike, anything
above this error will not be plotted

	-text_pad

	padding between text and rose diagram

	-text_size

	font size of text labeling the mode of the histogram

	-title_dict

	title dictionary

Methods

	-plot plots the pseudo section

	
	-redraw_plot

	on call redraws the plot from scratch -save_figure saves figure to a file of given format -update_plot updates the plot while still active -export_pt_params_to_file writes parameters of the phase tensor and tipper to text files.

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> p1.xy_color = (.5,.5,.9)
>>> p1.xy_marker = '*'
>>> p1.redraw_plot()

	
rot_z

	rotation angle(s)

	
save_plot(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

Examples

	Example

	>>> # to save plot as jpg
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotPhaseTensorMaps(edilist,freqspot=10)
>>> p1.save_plot(r'/home/MT', file_format='jpg')

‘Figure saved to /home/MT/PTMaps/PTmap_phimin_10Hz.jpg’

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> [ax.grid(True, which='major') for ax in [p1.axr,p1.axp]]
>>> p1.update_plot()

	
writeTextFiles(self, save_path=None)

	Saves the strike information as a text file.

Created on Thu May 30 18:28:24 2013

@author: jpeacock-pr

	
class mtpy.imaging.plotstrike2d.PlotStrike2D(**kwargs)

	PlotStrike will plot the strike estimated from the invariants, phase tensor
and the tipper in either a rose diagram of xy plot

plots the strike angle as determined by phase tensor azimuth (Caldwell et
al. [2004]) and invariants of the impedance tensor (Weaver et al. [2003]).

The data is split into decades where the histogram for each is plotted in
the form of a rose diagram with a range of 0 to 180 degrees.
Where 0 is North and 90 is East. The median angle of the period band is
set in polar diagram. The top row is the strike estimated from
the invariants of the impedance tensor. The bottom row is the azimuth
estimated from the phase tensor. If tipper is ‘y’ then the 3rd row is the
strike determined from the tipper, which is orthogonal to the induction
arrow direction.

	Attributes

	
	rot_z

	rotation angle(s)

Methods

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	save_plot(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	writeTextFiles(self[, save_path])

	Saves the strike information as a text file.

	plot

	

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> p1.xy_color = (.5,.5,.9)
>>> p1.xy_marker = '*'
>>> p1.redraw_plot()

	
rot_z

	rotation angle(s)

	
save_plot(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> [ax.grid(True, which='major') for ax in [p1.axr,p1.axp]]
>>> p1.update_plot()

	
writeTextFiles(self, save_path=None)

	Saves the strike information as a text file.

Plot MT Response

plot_mt_response

Plots the resistivity and phase for different modes and components

Created 2017

@author: jpeacock

	
class mtpy.imaging.plot_mt_response.PlotMTResponse(z_object=None, t_object=None, pt_obj=None, station='MT Response', **kwargs)

	Plots Resistivity and phase for the different modes of the MT response. At
the moment is supports the input of an .edi file. Other formats that will
be supported are the impedance tensor and errors with an array of periods
and .j format.

The normal use is to input an .edi file, however it would seem that not
everyone uses this format, so you can input the data and put it into
arrays or objects like class mtpy.core.z.Z. Or if the data is in
resistivity and phase format they can be input as arrays or a class
mtpy.imaging.mtplot.ResPhase. Or you can put it into a class
mtpy.imaging.mtplot.MTplot.

The plot places the apparent resistivity in log scale in the top panel(s),
depending on the plot_num. The phase is below this, note that 180 degrees
has been added to the yx phase so the xy and yx phases plot in the same
quadrant. Both the resistivity and phase share the same x-axis which is in
log period, short periods on the left to long periods on the right. So
if you zoom in on the plot both plots will zoom in to the same
x-coordinates. If there is tipper information, you can plot the tipper
as a third panel at the bottom, and also shares the x-axis. The arrows are
in the convention of pointing towards a conductor. The xx and yy
components can be plotted as well, this adds two panels on the right.
Here the phase is left unwrapped. Other parameters can be added as
subplots such as strike, skew and phase tensor ellipses.

To manipulate the plot you can change any of the attributes listed below
and call redraw_plot(). If you know more aout matplotlib and want to
change axes parameters, that can be done by changing the parameters in the
axes attributes and then call update_plot(), note the plot must be open.

	Attributes

	
	period

	plot period

Methods

	plot(self[, show])

	plotResPhase(filename,fig_num) will plot the apparent resistivity and phase for a single station.

	redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	save_plot(self, save_fn[, file_format, …])

	save_plot will save the figure to save_fn.

	update_plot(self)

	update any parameters that where changed using the built-in draw from canvas.

	
period

	plot period

	
plot(self, show=True)

	plotResPhase(filename,fig_num) will plot the apparent resistivity and
phase for a single station.

	
redraw_plot(self)

	use this function if you updated some attributes and want to re-plot.

	Example

	>>> # change the color and marker of the xy components
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> p1.xy_color = (.5,.5,.9)
>>> p1.xy_marker = '*'
>>> p1.redraw_plot()

	
save_plot(self, save_fn, file_format='pdf', orientation='portrait', fig_dpi=None, close_plot='y')

	save_plot will save the figure to save_fn.

	
update_plot(self)

	update any parameters that where changed using the built-in draw from
canvas.

Use this if you change an of the .fig or axes properties

	Example

	>>> # to change the grid lines to only be on the major ticks
>>> import mtpy.imaging.mtplottools as mtplot
>>> p1 = mtplot.PlotResPhase(r'/home/MT/mt01.edi')
>>> [ax.grid(True, which='major') for ax in [p1.axr,p1.axp]]
>>> p1.update_plot()

Visualization of Models

	
class mtpy.imaging.plot_depth_slice.PlotDepthSlice(model_fn=None, data_fn=None, **kwargs)

	Plots depth slices of resistivity model (file.rho)

	Example

	>>> import mtpy.modeling.ws3dinv as ws
>>> mfn = r"/home/MT/ws3dinv/Inv1/Test_model.00"
>>> sfn = r"/home/MT/ws3dinv/Inv1/WSStationLocations.txt"
>>> # plot just first layer to check the formatting
>>> pds = ws.PlotDepthSlice(model_fn=mfn, station_fn=sfn,
>>> ... depth_index=0, save_plots='n')
>>> #move color bar up
>>> pds.cb_location
>>> (0.64500000000000002, 0.14999999999999997, 0.3, 0.025)
>>> pds.cb_location = (.645, .175, .3, .025)
>>> pds.redraw_plot()
>>> #looks good now plot all depth slices and save them to a folder
>>> pds.save_path = r"/home/MT/ws3dinv/Inv1/DepthSlices"
>>> pds.depth_index = None
>>> pds.save_plots = 'y'
>>> pds.redraw_plot()

	Attributes

	Description

	cb_location

	location of color bar (x, y, width, height)
default is None, automatically locates

	cb_orientation

	[‘vertical’ | ‘horizontal’]
default is horizontal

	cb_pad

	padding between axes and colorbar
default is None

	cb_shrink

	percentage to shrink colorbar by
default is None

	climits

	(min, max) of resistivity color on log scale
default is (0, 4)

	cmap

	name of color map default is ‘jet_r’

	data_fn

	full path to data file

	depth_index

	integer value of depth slice index, shallowest
layer is 0

	dscale

	scaling parameter depending on map_scale

	ew_limits

	(min, max) plot limits in e-w direction in
map_scale units. default is None, sets viewing
area to the station area

	fig_aspect

	aspect ratio of plot. default is 1

	fig_dpi

	resolution of figure in dots-per-inch. default is
300

	fig_list

	list of matplotlib.figure instances for each
depth slice

	fig_size

	[width, height] in inches of figure size
default is [6, 6]

	font_size

	size of ticklabel font in points, labels are
font_size+2. default is 7

	grid_east

	relative location of grid nodes in e-w direction
in map_scale units

	grid_north

	relative location of grid nodes in n-s direction
in map_scale units

	grid_z

	relative location of grid nodes in z direction
in map_scale units

	initial_fn

	full path to initial file

	map_scale

	[‘km’ | ‘m’] distance units of map. default is
km

	mesh_east

	np.meshgrid(grid_east, grid_north, indexing=’ij’)

	mesh_north

	np.meshgrid(grid_east, grid_north, indexing=’ij’)

	model_fn

	full path to model file

	nodes_east

	relative distance betwen nodes in e-w direction
in map_scale units

	nodes_north

	relative distance betwen nodes in n-s direction
in map_scale units

	nodes_z

	relative distance betwen nodes in z direction
in map_scale units

	ns_limits

	(min, max) plot limits in n-s direction in
map_scale units. default is None, sets viewing
area to the station area

	plot_grid

	[‘y’ | ‘n’] ‘y’ to plot mesh grid lines.
default is ‘n’

	plot_yn

	[‘y’ | ‘n’] ‘y’ to plot on instantiation

	res_model

	np.ndarray(n_north, n_east, n_vertical) of
model resistivity values in linear scale

	save_path

	path to save figures to

	save_plots

	[‘y’ | ‘n’] ‘y’ to save depth slices to save_path

	station_east

	location of stations in east direction in
map_scale units

	station_fn

	full path to station locations file

	station_names

	station names

	station_north

	location of station in north direction in
map_scale units

	subplot_bottom

	distance between axes and bottom of figure window

	subplot_left

	distance between axes and left of figure window

	subplot_right

	distance between axes and right of figure window

	subplot_top

	distance between axes and top of figure window

	title

	titiel of plot default is depth of slice

	xminorticks

	location of xminorticks

	yminorticks

	location of yminorticks

Methods

	plot(self[, ind])

	plot the depth slice ind-th

	redraw_plot(self)

	redraw plot if parameters were changed use this function if you updated some attributes and want to re-plot.

	
plot(self, ind=1)

	plot the depth slice ind-th

	
redraw_plot(self)

	redraw plot if parameters were changed
use this function if you updated some attributes and want to re-plot.

 Package utils

Package utils

Shapefile Creator

	Description:

	Create shape files for Phase Tensor Ellipses, Tipper Real/Imag.
export the phase tensor map and tippers into jpeg/png images

CreationDate: 2017-03-06
Developer: fei.zhang@ga.gov.au

	Revision History:

	LastUpdate: 10/11/2017 FZ fix bugs after the big merge
LastUpdate: 20/11/2017 change from freq to period filenames, allow to specify a period
LastUpdate: 30/10/2018 combine ellipses and tippers together, refactorings

	
class mtpy.utils.shapefiles_creator.ShapeFilesCreator(edifile_list, outdir, orig_crs={'init': 'epsg:4283'})

	Extend the EdiCollection parent class,
create phase tensor and tipper shapefiles for a list of edifiles

	Parameters

	
	edifile_list – [path2edi,…]

	outdir – path2output dir, where the shp file will be written.

	= {'init' (orig_crs) – ‘epsg:4283’} # GDA94

Methods

	create_measurement_csv(self, dest_dir[, …])

	create csv file from the data of EDI files: IMPEDANCE, APPARENT RESISTIVITIES AND PHASES see also utils/shapefiles_creator.py

	create_mt_station_gdf(self[, outshpfile])

	create station location geopandas dataframe, and output to shape file

	create_phase_tensor_csv(self, dest_dir[, …])

	create phase tensor ellipse and tipper properties.

	create_phase_tensor_csv_with_image(*args, …)

	Using PlotPhaseTensorMaps class to generate csv file of phase tensor attributes, etc.

	create_phase_tensor_shp(self, period[, …])

	create phase tensor ellipses shape file correspond to a MT period :return: (geopdf_obj, path_to_shapefile)

	create_tipper_imag_shp(self, period[, …])

	create imagery tipper lines shapefile from a csv file The shapefile consists of lines without arrow.

	create_tipper_real_shp(self, period[, …])

	create real tipper lines shapefile from a csv file The shapefile consists of lines without arrow.

	display_on_basemap(self)

	display MT stations which are in stored in geopandas dataframe in a base map.

	display_on_image(self)

	display/overlay the MT properties on a background geo-referenced map image

	export_edi_files(self, dest_dir[, …])

	export edi files.

	get_bounding_box(self[, epsgcode])

	compute bounding box

	get_min_max_distance(self)

	get the min and max distance between all possible pairs of stations.

	get_period_occurance(self, aper)

	For a given aperiod, compute its occurance frequencies among the stations/edi :param aper: a float value of the period :return:

	get_periods_by_stats(self[, percentage])

	check the presence of each period in all edi files, keep a list of periods which are at least percentage present :return: a list of periods which are present in at least percentage edi files

	get_phase_tensor_tippers(self, period[, …])

	For a given MT period (s) value, compute the phase tensor and tippers etc.

	get_station_utmzones_stats(self)

	A simple method to find what UTM zones these (edi files) MT stations belong to are they in a single UTM zone, which corresponds to a unique EPSG code? or do they belong to multiple UTM zones?

	get_stations_distances_stats(self)

	get the min max statistics of the distances between stations.

	plot_stations(self[, savefile, showfig])

	Visualise the geopandas df of MT stations

	select_periods(self[, show, period_list, …])

	Use edi_collection to analyse the whole set of EDI files

	show_obj(self[, dest_dir])

	test call object’s methods and show it’s properties

	
create_phase_tensor_shp(self, period, ellipsize=None, target_epsg_code=4283, export_fig=False)

	create phase tensor ellipses shape file correspond to a MT period
:return: (geopdf_obj, path_to_shapefile)

	
create_tipper_imag_shp(self, period, line_length=None, target_epsg_code=4283, export_fig=False)

	create imagery tipper lines shapefile from a csv file
The shapefile consists of lines without arrow.
User can use GIS software such as ArcGIS to display and add an arrow at each line’s end
line_length is how long will be the line, auto-calculatable
:return:(geopdf_obj, path_to_shapefile)

	
create_tipper_real_shp(self, period, line_length=None, target_epsg_code=4283, export_fig=False)

	create real tipper lines shapefile from a csv file
The shapefile consists of lines without arrow.
User can use GIS software such as ArcGIS to display and add an arrow at each line’s end
line_length is how long will be the line, auto-calculatable

	
mtpy.utils.shapefiles_creator.create_ellipse_shp_from_csv(csvfile, esize=0.03, target_epsg_code=4283)

	create phase tensor ellipse geometry from a csv file. This function needs csv file as its input.
:param csvfile: a csvfile with full path
:param esize: ellipse size, defaut 0.03 is about 3KM in the max ellipse rad
:return: a geopandas dataframe

	
mtpy.utils.shapefiles_creator.create_tipper_imag_shp_from_csv(csvfile, line_length=0.03, target_epsg_code=4283)

	create imagery tipper lines shape from a csv file. this function needs csv file as input.
The shape is a line without arrow.
Must use a GIS software such as ArcGIS to display and add an arrow at each line’s end
line_length=4 how long will be the line (arrow)
return: a geopandas dataframe object for further processing.

	
mtpy.utils.shapefiles_creator.create_tipper_real_shp_from_csv(csvfile, line_length=0.03, target_epsg_code=4283)

	create tipper lines shape from a csv file. This function needs csv file as its input.
The shape is a line without arrow.
Must use a GIS software such as ArcGIS to display and add an arrow at each line’s end
line_length=4 how long will be the line (arrow)
return: a geopandas dataframe object for further processing.

	
mtpy.utils.shapefiles_creator.export_geopdf_to_image(geopdf, bbox, jpg_file_name, target_epsg_code=None, colorby=None, colormap=None, showfig=False)

	Export a geopandas dataframe to a jpe_file, with optionally a new epsg projection.
:param geopdf: a geopandas dataframe
:param bbox: This param ensures that we can set a consistent display area defined by a dict with 4 keys

[MinLat, MinLon, MaxLat, MaxLon], cover all ground stations, not just this period-dependent geopdf

	Parameters

	
	jpg_file_name (output) – path2jpeg

	target_epsg_code – 4326 etc

	showfig – If True, then display fig on screen.

	Returns

	

	
mtpy.utils.shapefiles_creator.plot_phase_tensor_ellipses_and_tippers(edi_dir, outfile=None, iperiod=0)

	plot phase tensor ellipses and tipers into one figure.
:param edi_dir: edi directory
:param outfile: save figure to output file
:param iperiod: the index of periods
:return: saved figure file

	
mtpy.utils.shapefiles_creator.process_csv_folder(csv_folder, bbox_dict, target_epsg_code=4283)

	process all *.csv files in a dir, ude target_epsg_code=4283 GDA94 as default.
This function uses csv-files folder as its input.
:param csv_folder:
:return:

Create shape files for phase tensor ellipses.
https://pcjericks.github.io/py-gdalogr-cookbook/vector_layers.html#create-a-new-shapefile-and-add-data

Created on Sun Apr 13 12:32:16 2014

@author: jrpeacock

	
class mtpy.utils.shapefiles.PTShapeFile(edi_list=None, proj='WGS84', esize=0.03, **kwargs)

	write shape file for GIS plotting programs

	key words/attributes

	Description

	edi_list

	list of edi files, full paths

	ellipse_size

	size of normalized ellipse in map scale
default is .01

	mt_obj_list

	list of mt.MT objects
default is None, filled if edi_list is given

	plot_period

	list or value of period to convert to shape file
default is None, which will write a file for
every period in the edi files

	ptol

	tolerance to look for given periods
default is .05

	pt_dict

	dictionary with keys of plot_period. Each
dictionary key is a structured array containing
the important information for the phase tensor.

	projection

	projection of coordinates see EPSG for all options
default is WSG84 in lat and lon

	save_path

	path to save files to
default is current working directory.

	Methods

	Description

	_get_plot_period

	get a list of all frequencies possible from
input files

	_get_pt_array

	get phase tensors from input files and put the
information into a structured array

	write_shape_files

	write shape files based on attributes of class

	This will project the data into UTM WSG84

	Example

	::
>>> edipath = r”/home/edi_files_rotated_to_geographic_north”
>>> edilist = [os.path.join(edipath, edi) for edi in os.listdir(edipath) if edi.find(‘.edi’)>0]
>>> pts = PTShapeFile(edilist, save_path=r”/home/gis”)
>>> pts.write_shape_files()

	To project into another datum, set the projection attribute

	Example

	::
>>> pts = PTShapeFile(edilist, save_path=r”/home/gis”)
>>> pts.projection = ‘NAD27’
>>> pts.write_shape_files()

	Attributes

	
	rotation_angle

	rotation angle of Z and Tipper

Methods

	write_data_pt_shape_files_modem(self, …[, …])

	write pt files from a modem data file.

	write_residual_pt_shape_files_modem(self, …)

	write residual pt shape files from ModEM output

	write_resp_pt_shape_files_modem(self, …[, …])

	write pt files from a modem response file where ellipses are normalized by the data file.

	write_shape_files(self[, periods])

	write shape file from given attributes https://pcjericks.github.io/py-gdalogr-cookbook/vector_layers.html #create-a-new-shapefile-and-add-data

	
rotation_angle

	rotation angle of Z and Tipper

	
write_data_pt_shape_files_modem(self, modem_data_fn, rotation_angle=0.0)

	write pt files from a modem data file.

	
write_residual_pt_shape_files_modem(self, modem_data_fn, modem_resp_fn, rotation_angle=0.0, normalize='1')

	write residual pt shape files from ModEM output

	normalize [‘1’ | ‘all’]

	
	
	‘1’ to normalize the ellipse by itself, all ellipses are

	normalized to phimax, thus one axis is of length
1*ellipse_size

	‘all’ to normalize each period by the largest phimax

	
write_resp_pt_shape_files_modem(self, modem_data_fn, modem_resp_fn, rotation_angle=0.0)

	write pt files from a modem response file where ellipses are normalized
by the data file.

	
write_shape_files(self, periods=None)

	write shape file from given attributes
https://pcjericks.github.io/py-gdalogr-cookbook/vector_layers.html
#create-a-new-shapefile-and-add-data

	
class mtpy.utils.shapefiles.TipperShapeFile(edi_list=None, **kwargs)

	write shape file for GIS plotting programs.

currently only writes the real induction vectors.

	key words/attributes

	Description

	arrow_direction

	[1 | -1] 1 for Weise convention –> point
toward conductors. default is 1
(-1 is not supported yet)

	arrow_head_height

	height of arrow head in map units
default is .002

	arrow_head_width

	width of arrow head in map units
default is .001

	arrow_lw

	width of arrow in map units
default is .0005

	arrow_size

	size of normalized arrow length in map units
default is .01

	edi_list

	list of edi files, full paths

	mt_obj_list

	list of mt.MT objects
default is None, filled if edi_list is given

	plot_period

	list or value of period to convert to shape file
default is None, which will write a file for
every period in the edi files

	ptol

	tolerance to look for given periods
default is .05

	pt_dict

	dictionary with keys of plot_period. Each
dictionary key is a structured array containing
the important information for the phase tensor.

	projection

	projection of coordinates see EPSG for all options
default is WSG84

	save_path

	path to save files to
default is current working directory.

	Methods

	Description

	_get_plot_period

	get a list of all possible frequencies from data

	_get_tip_array

	get Tipper information from data and put into
a structured array for easy manipulation

	write_real_shape_files

	write real induction arrow shape files

	write_imag_shape_files

	write imaginary induction arrow shape files

	Example

	::
>>> edipath = r”/home/edi_files_rotated_to_geographic_north”
>>> edilist = [os.path.join(edipath, edi) for edi in os.listdir(edipath) if edi.find(‘.edi’)>0]
>>> tipshp = TipperShapeFile(edilist, save_path=r”/home/gis”)
>>> tipshp.arrow_head_height = .005
>>> tipshp.arrow_lw = .0001
>>> tipshp.arrow_size = .05
>>> tipshp.write_shape_files()

	Attributes

	
	rotation_angle

	rotation angle of Z and Tipper

Methods

	write_imag_shape_files(self)

	write shape file from given attributes

	write_real_shape_files(self)

	write shape file from given attributes

	write_tip_shape_files_modem(self, modem_data_fn)

	write tip files from a modem data file.

	write_tip_shape_files_modem_residual(self, …)

	write residual tipper files for modem

	
rotation_angle

	rotation angle of Z and Tipper

	
write_imag_shape_files(self)

	write shape file from given attributes

	
write_real_shape_files(self)

	write shape file from given attributes

	
write_tip_shape_files_modem(self, modem_data_fn, rotation_angle=0.0)

	write tip files from a modem data file.

	
write_tip_shape_files_modem_residual(self, modem_data_fn, modem_resp_fn, rotation_angle)

	write residual tipper files for modem

	
mtpy.utils.shapefiles.create_phase_tensor_shpfiles(edi_dir, save_dir, proj='WGS84', ellipse_size=1000, every_site=1, period_list=None)

	generate shape file for a folder of edi files, and save the shape files a dir.
:param edi_dir:
:param save_dir:
:param proj: defult is WGS84-UTM, with ellipse_size=1000 meters
:param ellipse_size: the size of ellipse: 100-5000, try them out to suit your needs
:param every_site: by default every MT station will be output, but user can sample down with 2, 3,..
:return:

	
mtpy.utils.shapefiles.create_tipper_shpfiles(edipath, save_dir)

	Create Tipper (induction arrows real and imaginary) shape files
:param edipath:
:param save_dir:
:return:

	
mtpy.utils.shapefiles.modem_to_shapefiles(mfndat, save_dir)

	create shape file representaiotn for ModEM model
:param mfndat: path2Modular_NLCG_110.dat
:param save_dir: path2outshp
:return:

	
mtpy.utils.shapefiles.reproject_layer(in_shape_file, out_shape_file=None, out_proj='WGS84')

	reproject coordinates into a different coordinate system

GIS Tools

Created on Fri Apr 14 14:47:48 2017

@author: jrpeacock

	
exception mtpy.utils.gis_tools.GIS_ERROR

	

	
mtpy.utils.gis_tools.assert_elevation_value(elevation)

	make sure elevation is a floating point number

	
mtpy.utils.gis_tools.assert_lat_value(latitude)

	make sure latitude is in decimal degrees

	
mtpy.utils.gis_tools.assert_lon_value(longitude)

	make sure longitude is in decimal degrees

	
mtpy.utils.gis_tools.convert_position_float2str(position)

	convert position float to a string in the format of DD:MM:SS

	Returns

	
	position_strstring

	latitude or longitude in format of DD:MM:SS.ms

	
mtpy.utils.gis_tools.convert_position_str2float(position_str)

	Convert a position string in the format of DD:MM:SS to decimal degrees

	Returns

	
	positionfloat

	latitude or longitude in decimal degrees

	
mtpy.utils.gis_tools.epsg_project(x, y, epsg_from, epsg_to)

	project some xy points using the pyproj modules

	
mtpy.utils.gis_tools.get_epsg(latitude, longitude)

	get epsg code for the utm projection (WGS84 datum) of a given latitude
and longitude pair

	
mtpy.utils.gis_tools.get_utm_string_from_sr(*args, **kwargs)

	return utm zone string from spatial reference instance

	
mtpy.utils.gis_tools.get_utm_zone(latitude, longitude)

	Get utm zone from a given latitude and longitude

	
mtpy.utils.gis_tools.ll_to_utm(*args, **kwargs)

	converts lat/long to UTM coords. Equations from USGS Bulletin 1532
East Longitudes are positive, West longitudes are negative.
North latitudes are positive, South latitudes are negative
Lat and Long are in decimal degrees
Written by Chuck Gantz- chuck.gantz@globalstar.com

	Outputs:

	UTMzone, easting, northing

	
mtpy.utils.gis_tools.project_point_ll2utm(lat, lon, datum='WGS84', utm_zone=None, epsg=None)

	Project a point that is in Lat, Lon (will be converted to decimal degrees)
into UTM coordinates.

	
mtpy.utils.gis_tools.project_point_utm2ll(easting, northing, utm_zone, datum='WGS84', epsg=None)

	Project a point that is in Lat, Lon (will be converted to decimal degrees)
into UTM coordinates.

	
mtpy.utils.gis_tools.project_points_ll2utm(lat, lon, datum='WGS84', utm_zone=None, epsg=None)

	Project a list of points that is in Lat, Lon (will be converted to decimal
degrees) into UTM coordinates.

	
mtpy.utils.gis_tools.utm_to_ll(*args, **kwargs)

	converts UTM coords to lat/long. Equations from USGS Bulletin 1532
East Longitudes are positive, West longitudes are negative.
North latitudes are positive, South latitudes are negative
Lat and Long are in decimal degrees.
Written by Chuck Gantz- chuck.gantz@globalstar.com
Converted to Python by Russ Nelson <nelson@crynwr.com>

	Outputs:

	Lat,Lon

	
mtpy.utils.gis_tools.utm_wgs84_conv(lat, lon)

	Bidirectional UTM-WGS84 converter https://github.com/Turbo87/utm/blob/master/utm/conversion.py
:param lat:
:param lon:
:return: tuple(e, n, zone, lett)

	
mtpy.utils.gis_tools.utm_zone_to_epsg(zone_number, is_northern)

	get epsg code (WGS84 datum) for a given utm zone

Other Tools

	
class mtpy.utils.decorator.deprecated(reason)

	
	Description:

	used to mark functions, methods and classes deprecated, and prints warning message when it called
decorators based on https://stackoverflow.com/a/40301488

	Usage:

	todo: write usage

Author: YingzhiGou
Date: 20/06/2017

Methods

	__call__

	

Created on Wed Oct 25 09:35:31 2017

@author: Alison Kirkby

functions to assist with mesh generation

	
mtpy.utils.mesh_tools.get_nearest_index(array, value)

	Return the index of the nearest value to the provided value in an array:

	inputs:

	array = array or list of values
value = target value

	
mtpy.utils.mesh_tools.get_padding_cells(cell_width, max_distance, num_cells, stretch)

	get padding cells, which are exponentially increasing to a given
distance. Make sure that each cell is larger than the one previously.

	Returns

	
	paddingnp.ndarray

	array of padding cells for one side

	
mtpy.utils.mesh_tools.get_padding_cells2(cell_width, core_max, max_distance, num_cells)

	get padding cells, which are exponentially increasing to a given
distance. Make sure that each cell is larger than the one previously.

	
mtpy.utils.mesh_tools.get_padding_from_stretch(cell_width, pad_stretch, num_cells)

	get padding cells using pad stretch factor

	
mtpy.utils.mesh_tools.get_station_buffer(grid_east, grid_north, station_east, station_north, buf=10000.0)

	get cells within a specified distance (buf) of the stations
returns a 2D boolean (True/False) array

	
mtpy.utils.mesh_tools.grid_centre(grid_edges)

	calculate the grid centres from an array that defines grid edges
:param grid_edges: array containing grid edges
:returns: grid_centre: centre points of grid

	
mtpy.utils.mesh_tools.interpolate_elevation_to_grid(grid_east, grid_north, epsg=None, utm_zone=None, surfacefile=None, surface=None, method='linear', fast=True)

	project a surface to the model grid and add resulting elevation data
to a dictionary called surface_dict. Assumes the surface is in lat/long
coordinates (wgs84)
The ‘fast’ method extracts a subset of the elevation data that falls within the
mesh-bounds and interpolates them onto mesh nodes. This approach significantly
speeds up (~ x5) the interpolation procedure.

returns
nothing returned, but surface data are added to surface_dict under
the key given by surfacename.

inputs
choose to provide either surface_file (path to file) or surface (tuple).
If both are provided then surface tuple takes priority.

surface elevations are positive up, and relative to sea level.
surface file format is:

ncols 3601
nrows 3601
xllcorner -119.00013888889 (longitude of lower left)
yllcorner 36.999861111111 (latitude of lower left)
cellsize 0.00027777777777778
NODATA_value -9999
elevation data W –> E
N
|
V
S

Alternatively, provide a tuple with:
(lon,lat,elevation)
where elevation is a 2D array (shape (ny,nx)) containing elevation
points (order S -> N, W -> E)
and lon, lat are either 1D arrays containing list of longitudes and
latitudes (in the case of a regular grid) or 2D arrays with same shape
as elevation array containing longitude and latitude of each point.

other inputs:
surfacename = name of surface for putting into dictionary
surface_epsg = epsg number of input surface, default is 4326 for lat/lon(wgs84)
method = interpolation method. Default is ‘nearest’, if model grid is
dense compared to surface points then choose ‘linear’ or ‘cubic’

	
mtpy.utils.mesh_tools.make_log_increasing_array(z1_layer, target_depth, n_layers, increment_factor=0.9)

	create depth array with log increasing cells, down to target depth,
inputs are z1_layer thickness, target depth, number of layers (n_layers)

	
mtpy.utils.mesh_tools.rotate_mesh(grid_east, grid_north, origin, rotation_angle, return_centre=False)

	rotate a mesh defined by grid_east and grid_north.

	Parameters

	
	grid_east – 1d array defining the edges of the mesh in the east-west direction

	grid_north – 1d array defining the edges of the mesh in the north-south direction

	origin – real-world position of the (0,0) point in grid_east, grid_north

	rotation_angle – angle in degrees to rotate the grid by

	return_centre – True/False option to return points on centre of grid instead of grid edges

	Returns

	grid_east, grid_north - 2d arrays describing the east and north coordinates

A more Pythonic way of logging:
Define a class MtPyLog to wrap the python logging module;
Use a (optional) configuration file (yaml, ini, json) to configure the logging,
It will return a logger object with the user-provided config setting.
see also: http://www.cdotson.com/2015/11/python-logging-best-practices/

 Python Module Index

 Python Module Index

 e |
 j |
 m |
 t |
 z

 		 	

 		
 e	

 	
 	
 EDI	
 Deal with EDI files. The Edi class can read and write an .edi
file, the 'standard format' of magnetotellurics. Each section
of the .edi file is given its own class, so the elements of each
section are attributes for easy access.

 		 	

 		
 j	

 	
 	
 JFile	
 Deal with J-Files of the format propsed by Alan Jones

 		 	

 		
 m	

 	
 	
 MT	
 The main container for MT response functions.

 	
 	
 mt_xml	
 Deal with XML MT files

 	[image: -]
 	
 mtpy	

 	
 	
 mtpy.analysis.distortion	

 	
 	
 mtpy.analysis.geometry	

 	
 	
 mtpy.analysis.pt	

 	
 	
 mtpy.analysis.staticshift	

 	
 	
 mtpy.analysis.zinvariants	

 	
 	
 mtpy.core.edi	

 	
 	
 mtpy.core.edi_collection	

 	
 	
 mtpy.core.jfile	

 	
 	
 mtpy.core.mt	

 	
 	
 mtpy.core.mt_xml	

 	
 	
 mtpy.core.ts	

 	
 	
 mtpy.core.z	

 	
 	
 mtpy.imaging.mtplot	

 	
 	
 mtpy.imaging.penetration	

 	
 	
 mtpy.imaging.penetration_depth1d	

 	
 	
 mtpy.imaging.penetration_depth2d	

 	
 	
 mtpy.imaging.penetration_depth3d	

 	
 	
 mtpy.imaging.phase_tensor_maps	

 	
 	
 mtpy.imaging.phase_tensor_pseudosection	

 	
 	
 mtpy.imaging.plot_depth_slice	

 	
 	
 mtpy.imaging.plot_mt_response	

 	
 	
 mtpy.imaging.plot_resphase_maps	

 	
 	
 mtpy.imaging.plotnresponses	

 	
 	
 mtpy.imaging.plotresponse	

 	
 	
 mtpy.imaging.plotstrike	

 	
 	
 mtpy.imaging.plotstrike2d	

 	
 	
 mtpy.modeling.modem	

 	
 	
 mtpy.modeling.modem.phase_tensor_maps	

 	
 	
 mtpy.modeling.modem.plot_response	

 	
 	
 mtpy.modeling.modem.plot_rms_maps	

 	
 	
 mtpy.modeling.modem.plot_slices	

 	
 	
 mtpy.modeling.occam1d	

 	
 	
 mtpy.modeling.occam2d_rewrite	

 	
 	
 mtpy.modeling.winglink	

 	
 	
 mtpy.modeling.ws3dinv	

 	
 	
 mtpy.utils.decorator	

 	
 	
 mtpy.utils.gis_tools	

 	
 	
 mtpy.utils.mesh_tools	

 	
 	
 mtpy.utils.mtpylog	

 	
 	
 mtpy.utils.shapefiles	

 	
 	
 mtpy.utils.shapefiles_creator	

 		 	

 		
 t	

 	
 	
 TS	
 Deal with MT time series

 		 	

 		
 z	

 	
 	
 Z	
 Deal with MT responses Z and Tipper

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X
 | Z

A

 	
 	add_dict() (mtpy.modeling.modem.ModEMConfig method)

 	add_elevation() (mtpy.modeling.occam2d_rewrite.Mesh method)

 	add_layers_to_mesh() (mtpy.modeling.modem.Model method)

 	add_topography_to_model2() (mtpy.modeling.modem.Model method)

 	alpha (mtpy.analysis.pt.PhaseTensor attribute)

 	
 	apply_addaptive_notch_filter() (mtpy.core.ts.MT_TS method)

 	assert_elevation_value() (in module mtpy.utils.gis_tools)

 	assert_lat_value() (in module mtpy.utils.gis_tools)

 	assert_lon_value() (in module mtpy.utils.gis_tools)

 	assign_resistivity_from_surfacedata() (mtpy.modeling.modem.Model method)

 	azimuth (mtpy.analysis.pt.PhaseTensor attribute)

B

 	
 	barplot_multi_station_penentration_depth() (in module mtpy.imaging.penetration_depth2d)

 	beta (mtpy.analysis.pt.PhaseTensor attribute)

 	build_data() (mtpy.modeling.ws3dinv.WSData method)

 	
 	build_mesh() (mtpy.modeling.occam2d_rewrite.Mesh method)

 	build_model() (mtpy.modeling.occam2d_rewrite.Model method)

 	build_regularization() (mtpy.modeling.occam2d_rewrite.Regularization method)

 	build_run() (in module mtpy.modeling.occam1d)

C

 	
 	calculate_rel_locations() (mtpy.modeling.modem.Stations method)

 	calculate_residual_from_data() (mtpy.modeling.modem.Residual method)

 	center_point (mtpy.modeling.modem.Stations attribute)

 	center_stations() (mtpy.modeling.modem.Data method)

 	change_data_elevation() (mtpy.modeling.modem.Data method)

 	change_model_res() (mtpy.modeling.modem.ModelManipulator method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	check_period_values() (in module mtpy.imaging.penetration)

 	check_utm_crossing() (mtpy.modeling.modem.Stations method)

 	Citation (class in mtpy.core.mt)

 	cmap_discretize() (in module mtpy.modeling.ws3dinv)

 	compute_amp_phase() (mtpy.core.z.Tipper method)

 	compute_errors() (mtpy.modeling.ws3dinv.WSData method)

 	compute_inv_error() (mtpy.modeling.modem.Data method)

 	compute_invariants() (mtpy.analysis.zinvariants.Zinvariants method)

 	compute_mag_direction() (mtpy.core.z.Tipper method)

 	compute_phase_tensor() (mtpy.modeling.modem.Data method)

 	compute_residual_pt() (mtpy.analysis.pt.ResidualPhaseTensor method)

 	compute_resistivity_phase() (mtpy.core.z.ResPhase method)

 	compute_spectra() (mtpy.core.ts.Spectra method)

 	computeMemoryUsage() (in module mtpy.modeling.ws3dinv)

 	ControlFwd (class in mtpy.modeling.modem)

 	ControlInv (class in mtpy.modeling.modem)

 	
 	convert_model_to_int() (mtpy.modeling.ws3dinv.WSMesh method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	convert_modem_to_ws() (mtpy.modeling.modem.Data method)

 	convert_position_float2str() (in module mtpy.utils.gis_tools)

 	convert_position_str2float() (in module mtpy.utils.gis_tools)

 	convert_res_to_model() (mtpy.modeling.ws3dinv.WSModelManipulator method)

 	convert_ws3dinv_data_file() (mtpy.modeling.modem.Data method)

 	Copyright (class in mtpy.core.mt)

 	correct4sensor_orientation() (in module mtpy.core.z)

 	Covariance (class in mtpy.modeling.modem)

 	create_csv_file() (in module mtpy.imaging.penetration_depth3d)

 	create_ellipse_shp_from_csv() (in module mtpy.utils.shapefiles_creator)

 	create_measurement_csv() (mtpy.core.edi_collection.EdiCollection method)

 	create_mt_station_gdf() (mtpy.core.edi_collection.EdiCollection method)

 	create_phase_tensor_csv() (mtpy.core.edi_collection.EdiCollection method)

 	create_phase_tensor_csv_with_image() (mtpy.core.edi_collection.EdiCollection method)

 	create_phase_tensor_shp() (mtpy.utils.shapefiles_creator.ShapeFilesCreator method)

 	create_phase_tensor_shpfiles() (in module mtpy.utils.shapefiles)

 	create_shapefile() (in module mtpy.imaging.penetration_depth3d)

 	create_tipper_imag_shp() (mtpy.utils.shapefiles_creator.ShapeFilesCreator method)

 	create_tipper_imag_shp_from_csv() (in module mtpy.utils.shapefiles_creator)

 	create_tipper_real_shp() (mtpy.utils.shapefiles_creator.ShapeFilesCreator method)

 	create_tipper_real_shp_from_csv() (in module mtpy.utils.shapefiles_creator)

 	create_tipper_shpfiles() (in module mtpy.utils.shapefiles)

D

 	
 	Data (class in mtpy.modeling.modem)

 	(class in mtpy.modeling.occam1d)

 	(class in mtpy.modeling.occam2d_rewrite)

 	DataError

 	DataQuality (class in mtpy.core.mt)

 	DataSection (class in mtpy.core.edi)

 	decimate() (mtpy.core.ts.MT_TS method)

 	DefineMeasurement (class in mtpy.core.edi)

 	deprecated (class in mtpy.utils.decorator)

 	
 	Depth1D (class in mtpy.imaging.penetration)

 	Depth2D (class in mtpy.imaging.penetration)

 	Depth3D (class in mtpy.imaging.penetration)

 	det (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.z.Z attribute)

 	det_err (mtpy.core.z.Z attribute)

 	dimensionality() (in module mtpy.analysis.geometry)

 	display_on_basemap() (mtpy.core.edi_collection.EdiCollection method)

 	display_on_image() (mtpy.core.edi_collection.EdiCollection method)

 	divide_inputs() (in module mtpy.modeling.occam1d)

E

 	
 	east (mtpy.core.mt.MT attribute)

 	eccentricity() (in module mtpy.analysis.geometry)

 	Edi (class in mtpy.core.edi)

 	EDI (module)

 	edi_file2pt() (in module mtpy.analysis.pt)

 	EdiCollection (class in mtpy.core.edi_collection)

 	elev (mtpy.core.edi.Edi attribute)

 	(mtpy.core.mt.MT attribute)

 	(mtpy.core.ts.MT_TS attribute)

 	
 	ellipticity (mtpy.analysis.pt.PhaseTensor attribute)

 	EMeasurement (class in mtpy.core.edi)

 	epsg_project() (in module mtpy.utils.gis_tools)

 	estimate_skin_depth() (in module mtpy.modeling.ws3dinv)

 	estimate_static_spatial_median() (in module mtpy.analysis.staticshift)

 	export_edi_files() (mtpy.core.edi_collection.EdiCollection method)

 	export_geopdf_to_image() (in module mtpy.utils.shapefiles_creator)

 	export_params_to_file() (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps method)

 	export_slices() (mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.modem.PlotSlices method)

F

 	
 	FieldNotes (class in mtpy.core.mt)

 	fill_data_array() (mtpy.modeling.modem.Data method)

 	filter_periods() (mtpy.modeling.modem.Data static method)

 	find_1d_distortion() (in module mtpy.analysis.distortion)

 	find_2d_distortion() (in module mtpy.analysis.distortion)

 	
 	find_distortion() (in module mtpy.analysis.distortion)

 	fn (mtpy.core.mt.MT attribute)

 	freq (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.z.Z attribute)

 	from_wl_write_station_file() (mtpy.modeling.ws3dinv.WSStation method)

G

 	
 	generate_inputfiles() (in module mtpy.modeling.occam1d)

 	generate_profile() (mtpy.modeling.occam2d_rewrite.Profile method)

 	get_bounding_box() (in module mtpy.imaging.penetration)

 	(mtpy.core.edi_collection.EdiCollection method)

 	get_data_sect() (mtpy.core.edi.DataSection method)

 	get_epsg() (in module mtpy.utils.gis_tools)

 	get_header_list() (mtpy.core.edi.Header method)

 	get_header_string() (mtpy.modeling.modem.Data static method)

 	get_index() (in module mtpy.imaging.penetration)

 	get_index2() (in module mtpy.imaging.penetration_depth3d)

 	get_info_list() (mtpy.core.edi.Information method)

 	get_measurement_dict() (mtpy.core.edi.DefineMeasurement method)

 	get_measurement_lists() (mtpy.core.edi.DefineMeasurement method)

 	get_min_max_distance() (mtpy.core.edi_collection.EdiCollection method)

 	get_misfit() (mtpy.modeling.occam2d_rewrite.PlotMisfitPseudoSection method)

 	(mtpy.modeling.winglink.PlotMisfitPseudoSection method)

 	get_model() (mtpy.modeling.modem.ModelManipulator method)

 	get_mt_dict() (mtpy.modeling.modem.Data method)

 	get_nearest_index() (in module mtpy.utils.mesh_tools)

 	get_num_free_params() (mtpy.modeling.occam2d_rewrite.Regularization method)

 	get_padding_cells() (in module mtpy.utils.mesh_tools)

 	get_padding_cells2() (in module mtpy.utils.mesh_tools)

 	get_padding_from_stretch() (in module mtpy.utils.mesh_tools)

 	get_parameters() (mtpy.modeling.modem.Data method)

 	(mtpy.modeling.modem.Model method)

 	
 	get_penetration_depth() (in module mtpy.imaging.penetration)

 	get_penetration_depth_generic() (in module mtpy.imaging.penetration)

 	get_penetration_depths_from_edi_file() (in module mtpy.imaging.penetration_depth3d)

 	get_period_attributes() (mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	get_period_list() (mtpy.modeling.modem.Data method)

 	get_period_occurance() (mtpy.core.edi_collection.EdiCollection method)

 	get_periods_by_stats() (mtpy.core.edi_collection.EdiCollection method)

 	get_phase_tensor_tippers() (mtpy.core.edi_collection.EdiCollection method)

 	get_profile_origin() (mtpy.modeling.occam2d_rewrite.Data method)

 	get_relative_station_locations() (mtpy.modeling.modem.Data method)

 	get_slice() (mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.modem.PlotSlices method)

 	get_station_buffer() (in module mtpy.utils.mesh_tools)

 	get_station_grid_locations() (mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	get_station_locations() (mtpy.modeling.modem.Stations method)

 	get_station_utmzones_stats() (mtpy.core.edi_collection.EdiCollection method)

 	get_stations_distances_stats() (mtpy.core.edi_collection.EdiCollection method)

 	get_strike() (in module mtpy.modeling.occam1d)

 	get_utm_string_from_sr() (in module mtpy.utils.gis_tools)

 	get_utm_zone() (in module mtpy.utils.gis_tools)

 	GIS_ERROR

 	grid_centre() (in module mtpy.utils.mesh_tools)

H

 	
 	Header (class in mtpy.core.edi)

 	
 	HMeasurement (class in mtpy.core.edi)

I

 	
 	inAxes() (mtpy.modeling.occam2d_rewrite.OccamPointPicker method)

 	inFigure() (mtpy.modeling.occam2d_rewrite.OccamPointPicker method)

 	Information (class in mtpy.core.edi)

 	Instrument (class in mtpy.core.mt)

 	interpolate() (mtpy.core.mt.MT method)

 	
 	interpolate_elevation2() (mtpy.modeling.modem.Model method)

 	interpolate_elevation_to_grid() (in module mtpy.utils.mesh_tools)

 	invariants (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.z.Z attribute)

 	inverse (mtpy.core.z.Z attribute)

 	is_num_in_seq() (in module mtpy.core.edi_collection)

J

 	
 	JFile (class in mtpy.core.jfile)

 	(module)

L

 	
 	lat (mtpy.core.edi.Edi attribute)

 	(mtpy.core.mt.MT attribute)

 	(mtpy.core.ts.MT_TS attribute)

 	ll_to_utm() (in module mtpy.utils.gis_tools)

 	
 	Location (class in mtpy.core.mt)

 	lon (mtpy.core.edi.Edi attribute)

 	(mtpy.core.mt.MT attribute)

 	(mtpy.core.ts.MT_TS attribute)

 	low_pass_filter() (mtpy.core.ts.MT_TS method)

M

 	
 	make_log_increasing_array() (in module mtpy.utils.mesh_tools)

 	make_mesh() (mtpy.modeling.modem.Model method)

 	(mtpy.modeling.ws3dinv.WSMesh method)

 	make_z_mesh_new() (mtpy.modeling.modem.Model method)

 	Mask (class in mtpy.modeling.occam2d_rewrite)

 	mask_from_datafile() (mtpy.modeling.occam2d_rewrite.Data method)

 	mask_points() (mtpy.modeling.occam2d_rewrite.Data method)

 	Mesh (class in mtpy.modeling.occam2d_rewrite)

 	Model (class in mtpy.modeling.modem)

 	(class in mtpy.modeling.occam1d)

 	(class in mtpy.modeling.occam2d_rewrite)

 	ModelManipulator (class in mtpy.modeling.modem)

 	modem_to_shapefiles() (in module mtpy.utils.shapefiles)

 	ModEMConfig (class in mtpy.modeling.modem)

 	ModEMError

 	MT (class in mtpy.core.mt)

 	(module)

 	MT_Error

 	MT_TS (class in mtpy.core.ts)

 	MT_TS_Error

 	MT_XML (class in mtpy.core.mt_xml)

 	mt_xml (module)

 	MT_XML_Error

 	MT_Z_Error

 	mtpy.analysis.distortion (module)

 	mtpy.analysis.geometry (module)

 	mtpy.analysis.pt (module)

 	mtpy.analysis.staticshift (module)

 	mtpy.analysis.zinvariants (module)

 	mtpy.core.edi (module)

 	mtpy.core.edi_collection (module)

 	mtpy.core.jfile (module)

 	
 	mtpy.core.mt (module)

 	mtpy.core.mt_xml (module)

 	mtpy.core.ts (module)

 	mtpy.core.z (module)

 	mtpy.imaging.mtplot (module)

 	mtpy.imaging.penetration (module)

 	mtpy.imaging.penetration_depth1d (module)

 	mtpy.imaging.penetration_depth2d (module)

 	mtpy.imaging.penetration_depth3d (module)

 	mtpy.imaging.phase_tensor_maps (module)

 	mtpy.imaging.phase_tensor_pseudosection (module)

 	mtpy.imaging.plot_depth_slice (module)

 	mtpy.imaging.plot_mt_response (module)

 	mtpy.imaging.plot_resphase_maps (module)

 	mtpy.imaging.plotnresponses (module)

 	mtpy.imaging.plotresponse (module)

 	mtpy.imaging.plotstrike (module)

 	mtpy.imaging.plotstrike2d (module)

 	mtpy.modeling.modem (module)

 	mtpy.modeling.modem.phase_tensor_maps (module)

 	mtpy.modeling.modem.plot_response (module)

 	mtpy.modeling.modem.plot_rms_maps (module)

 	mtpy.modeling.modem.plot_slices (module)

 	mtpy.modeling.occam1d (module)

 	mtpy.modeling.occam2d_rewrite (module)

 	mtpy.modeling.winglink (module)

 	mtpy.modeling.ws3dinv (module)

 	mtpy.utils.decorator (module)

 	mtpy.utils.gis_tools (module)

 	mtpy.utils.mesh_tools (module)

 	mtpy.utils.mtpylog (module)

 	mtpy.utils.shapefiles (module)

 	mtpy.utils.shapefiles_creator (module)

N

 	
 	n_samples (mtpy.core.ts.MT_TS attribute)

 	norm (mtpy.core.z.Z attribute)

 	
 	norm_err (mtpy.core.z.Z attribute)

 	north (mtpy.core.mt.MT attribute)

O

 	
 	OccamInputError

 	OccamPointPicker (class in mtpy.modeling.occam2d_rewrite)

 	on_close() (mtpy.modeling.occam2d_rewrite.OccamPointPicker method)

 	on_key_press() (mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	
 	only_1d (mtpy.core.z.Z attribute)

 	only_2d (mtpy.core.z.Z attribute)

P

 	
 	parse_arguments() (in module mtpy.modeling.occam1d)

 	period (mtpy.imaging.plot_mt_response.PlotMTResponse attribute)

 	Person (class in mtpy.core.mt)

 	PhaseTensor (class in mtpy.analysis.pt)

 	phimax (mtpy.analysis.pt.PhaseTensor attribute)

 	phimin (mtpy.analysis.pt.PhaseTensor attribute)

 	plot() (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps method)

 	(mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	(mtpy.imaging.plot_depth_slice.PlotDepthSlice method)

 	(mtpy.imaging.plot_mt_response.PlotMTResponse method)

 	(mtpy.imaging.plot_resphase_maps.PlotResPhaseMaps method)

 	(mtpy.imaging.plotnresponses.PlotMultipleResponses method)

 	(mtpy.imaging.plotresponse.PlotResponse method)

 	(mtpy.modeling.modem.ModelManipulator method)

 	(mtpy.modeling.modem.PlotRMSMaps method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	(mtpy.modeling.modem.plot_rms_maps.PlotRMSMaps method)

 	(mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.occam1d.Plot1DResponse method)

 	(mtpy.modeling.occam1d.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotMisfitPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotModel method)

 	(mtpy.modeling.occam2d_rewrite.PlotPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotResponse method)

 	(mtpy.modeling.winglink.PlotMisfitPseudoSection method)

 	(mtpy.modeling.winglink.PlotPseudoSection method)

 	(mtpy.modeling.winglink.PlotResponse method)

 	(mtpy.modeling.ws3dinv.PlotDepthSlice method)

 	(mtpy.modeling.ws3dinv.PlotPTMaps method)

 	(mtpy.modeling.ws3dinv.PlotResponse method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	Plot1DResponse (class in mtpy.modeling.occam1d)

 	plot_bar3d_depth() (in module mtpy.imaging.penetration_depth3d)

 	plot_edi_dir() (in module mtpy.imaging.penetration_depth1d)

 	plot_edi_file() (in module mtpy.imaging.penetration_depth1d)

 	plot_errorbar() (mtpy.modeling.ws3dinv.PlotResponse method)

 	plot_latlon_depth_profile() (in module mtpy.imaging.penetration_depth3d)

 	plot_loop() (mtpy.modeling.modem.plot_rms_maps.PlotRMSMaps method)

 	(mtpy.modeling.modem.PlotRMSMaps method)

 	plot_mask_points() (mtpy.modeling.occam2d_rewrite.Data method)

 	plot_mesh() (mtpy.modeling.modem.Model method)

 	(mtpy.modeling.occam2d_rewrite.Mesh method)

 	(mtpy.modeling.ws3dinv.WSMesh method)

 	plot_mesh_xy() (mtpy.modeling.modem.Model method)

 	plot_mesh_xz() (mtpy.modeling.modem.Model method)

 	plot_mt_response() (in module mtpy.imaging.mtplot)

 	(mtpy.core.mt.MT method)

 	plot_multiple_mt_responses() (in module mtpy.imaging.mtplot)

 	plot_on_axes() (mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	plot_phase_tensor_ellipses_and_tippers() (in module mtpy.utils.shapefiles_creator)

 	plot_profile() (mtpy.modeling.occam2d_rewrite.Profile method)

 	plot_pt (mtpy.imaging.plotnresponses.PlotMultipleResponses attribute)

 	(mtpy.imaging.plotresponse.PlotResponse attribute)

 	plot_pt() (in module mtpy.imaging.mtplot)

 	plot_pt_map() (in module mtpy.imaging.mtplot)

 	plot_pt_pseudosection() (in module mtpy.imaging.mtplot)

 	
 	plot_residual_pt_maps() (in module mtpy.imaging.mtplot)

 	plot_residual_pt_ps() (in module mtpy.imaging.mtplot)

 	plot_resphase_pseudosection() (in module mtpy.imaging.mtplot)

 	plot_response() (mtpy.modeling.occam2d_rewrite.Data method)

 	plot_skew (mtpy.imaging.plotnresponses.PlotMultipleResponses attribute)

 	(mtpy.imaging.plotresponse.PlotResponse attribute)

 	plot_spectra() (mtpy.core.ts.MT_TS method)

 	plot_station_locations() (in module mtpy.imaging.mtplot)

 	plot_stations() (mtpy.core.edi_collection.EdiCollection method)

 	plot_strike (mtpy.imaging.plotnresponses.PlotMultipleResponses attribute)

 	(mtpy.imaging.plotresponse.PlotResponse attribute)

 	plot_strike() (in module mtpy.imaging.mtplot)

 	plot_tipper (mtpy.imaging.plotnresponses.PlotMultipleResponses attribute)

 	(mtpy.imaging.plotresponse.PlotResponse attribute)

 	plot_topography() (mtpy.modeling.modem.Model method)

 	PlotDepthSlice (class in mtpy.imaging.plot_depth_slice)

 	(class in mtpy.modeling.ws3dinv)

 	PlotL2 (class in mtpy.modeling.occam1d)

 	(class in mtpy.modeling.occam2d_rewrite)

 	PlotMisfitPseudoSection (class in mtpy.modeling.occam2d_rewrite)

 	(class in mtpy.modeling.winglink)

 	PlotModel (class in mtpy.modeling.occam2d_rewrite)

 	PlotMTResponse (class in mtpy.imaging.plot_mt_response)

 	PlotMultipleResponses (class in mtpy.imaging.plotnresponses)

 	PlotPhaseTensorMaps (class in mtpy.imaging.phase_tensor_maps)

 	PlotPhaseTensorPseudoSection (class in mtpy.imaging.phase_tensor_pseudosection)

 	PlotPseudoSection (class in mtpy.modeling.occam2d_rewrite)

 	(class in mtpy.modeling.winglink)

 	PlotPTMaps (class in mtpy.modeling.modem.phase_tensor_maps)

 	(class in mtpy.modeling.ws3dinv)

 	PlotResPhaseMaps (class in mtpy.imaging.plot_resphase_maps)

 	PlotResponse (class in mtpy.imaging.plotresponse)

 	(class in mtpy.modeling.modem)

 	(class in mtpy.modeling.modem.plot_response)

 	(class in mtpy.modeling.occam2d_rewrite)

 	(class in mtpy.modeling.winglink)

 	(class in mtpy.modeling.ws3dinv)

 	PlotRMSMaps (class in mtpy.modeling.modem)

 	(class in mtpy.modeling.modem.plot_rms_maps)

 	PlotSlices (class in mtpy.modeling.modem)

 	(class in mtpy.modeling.modem.plot_slices)

 	(class in mtpy.modeling.ws3dinv)

 	PlotStrike (class in mtpy.imaging.plotstrike)

 	PlotStrike2D (class in mtpy.imaging.plotstrike2d)

 	process_csv_folder() (in module mtpy.utils.shapefiles_creator)

 	Processing (class in mtpy.core.mt)

 	Profile (class in mtpy.modeling.occam2d_rewrite)

 	project_elevation() (mtpy.modeling.occam2d_rewrite.Profile method)

 	project_location2ll() (mtpy.core.mt.Location method)

 	project_location2utm() (mtpy.core.mt.Location method)

 	project_point_ll2utm() (in module mtpy.utils.gis_tools)

 	project_point_utm2ll() (in module mtpy.utils.gis_tools)

 	project_points_ll2utm() (in module mtpy.utils.gis_tools)

 	project_stations_on_topography() (mtpy.modeling.modem.Data method)

 	Provenance (class in mtpy.core.mt)

 	pt (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.mt.MT attribute)

 	pt_err (mtpy.analysis.pt.PhaseTensor attribute)

 	PTShapeFile (class in mtpy.utils.shapefiles)

R

 	
 	read_ascii() (mtpy.core.ts.MT_TS method)

 	read_ascii_header() (mtpy.core.ts.MT_TS method)

 	read_cfg_file() (mtpy.core.mt.MT method)

 	(mtpy.core.mt_xml.XML_Config method)

 	read_control_file() (mtpy.modeling.modem.ControlFwd method)

 	(mtpy.modeling.modem.ControlInv method)

 	read_cov_file() (mtpy.modeling.modem.Covariance method)

 	read_data_file() (mtpy.modeling.modem.Data method)

 	(mtpy.modeling.occam1d.Data method)

 	(mtpy.modeling.occam2d_rewrite.Data method)

 	(mtpy.modeling.ws3dinv.WSData method)

 	read_data_sect() (mtpy.core.edi.DataSection method)

 	read_define_measurement() (mtpy.core.edi.DefineMeasurement method)

 	read_edi_file() (mtpy.core.edi.Edi method)

 	read_file() (mtpy.modeling.ws3dinv.WSModelManipulator method)

 	read_files() (mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.ws3dinv.PlotDepthSlice method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	read_gocad_sgrid_file() (mtpy.modeling.modem.Model method)

 	read_hdf5() (mtpy.core.ts.MT_TS method)

 	read_header() (mtpy.core.edi.Header method)

 	(mtpy.core.jfile.JFile method)

 	read_info() (mtpy.core.edi.Information method)

 	read_initial_file() (mtpy.modeling.ws3dinv.WSMesh method)

 	read_iter_file() (mtpy.modeling.occam1d.Model method)

 	(mtpy.modeling.occam2d_rewrite.Model method)

 	read_j_file() (mtpy.core.jfile.JFile method)

 	read_mesh_file() (mtpy.modeling.occam2d_rewrite.Mesh method)

 	read_metadata() (mtpy.core.jfile.JFile method)

 	read_model_file() (in module mtpy.modeling.winglink)

 	(mtpy.modeling.modem.Model method)

 	(mtpy.modeling.occam1d.Model method)

 	(mtpy.modeling.ws3dinv.WSModel method)

 	read_mt_file() (mtpy.core.mt.MT method)

 	read_output_file() (in module mtpy.modeling.winglink)

 	read_pts() (mtpy.analysis.pt.ResidualPhaseTensor method)

 	read_regularization_file() (mtpy.modeling.occam2d_rewrite.Regularization method)

 	read_resp_file() (mtpy.modeling.occam1d.Data method)

 	(mtpy.modeling.ws3dinv.WSResponse method)

 	read_response_file() (mtpy.modeling.occam2d_rewrite.Response method)

 	read_startup_file() (mtpy.modeling.occam1d.Startup method)

 	(mtpy.modeling.ws3dinv.WSStartup method)

 	read_station_file() (mtpy.modeling.ws3dinv.WSStation method)

 	read_ws_model_file() (mtpy.modeling.modem.Model method)

 	read_xml_file() (mtpy.core.mt_xml.MT_XML method)

 	rect_onselect() (mtpy.modeling.modem.ModelManipulator method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	redraw_plot() (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps method)

 	(mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	(mtpy.imaging.plot_depth_slice.PlotDepthSlice method)

 	(mtpy.imaging.plot_mt_response.PlotMTResponse method)

 	(mtpy.imaging.plotnresponses.PlotMultipleResponses method)

 	(mtpy.imaging.plotresponse.PlotResponse method)

 	(mtpy.imaging.plotstrike.PlotStrike method)

 	(mtpy.imaging.plotstrike2d.PlotStrike2D method)

 	(mtpy.modeling.modem.ModelManipulator method)

 	(mtpy.modeling.modem.PlotResponse method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	(mtpy.modeling.modem.plot_response.PlotResponse method)

 	(mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.occam1d.Plot1DResponse method)

 	(mtpy.modeling.occam1d.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotMisfitPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotModel method)

 	(mtpy.modeling.occam2d_rewrite.PlotPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotResponse method)

 	(mtpy.modeling.winglink.PlotMisfitPseudoSection method)

 	(mtpy.modeling.winglink.PlotPseudoSection method)

 	(mtpy.modeling.winglink.PlotResponse method)

 	(mtpy.modeling.ws3dinv.PlotDepthSlice method)

 	(mtpy.modeling.ws3dinv.PlotPTMaps method)

 	(mtpy.modeling.ws3dinv.PlotResponse method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	
 	Regularization (class in mtpy.modeling.occam2d_rewrite)

 	remove_distortion() (in module mtpy.analysis.distortion)

 	(mtpy.core.mt.MT method)

 	(mtpy.core.z.Z method)

 	remove_ss() (mtpy.core.z.Z method)

 	remove_static_shift() (mtpy.core.mt.MT method)

 	remove_static_shift_spatial_filter() (in module mtpy.analysis.staticshift)

 	reproject_layer() (in module mtpy.utils.shapefiles)

 	Residual (class in mtpy.modeling.modem)

 	ResidualPhaseTensor (class in mtpy.analysis.pt)

 	ResPhase (class in mtpy.core.z)

 	Response (class in mtpy.modeling.occam2d_rewrite)

 	reverse_colourmap() (in module mtpy.imaging.penetration_depth3d)

 	rewrite_initial_file() (mtpy.modeling.ws3dinv.WSModelManipulator method)

 	rewrite_model_file() (mtpy.modeling.modem.ModelManipulator method)

 	rot_z (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps attribute)

 	(mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection attribute)

 	(mtpy.imaging.plotnresponses.PlotMultipleResponses attribute)

 	(mtpy.imaging.plotstrike.PlotStrike attribute)

 	(mtpy.imaging.plotstrike2d.PlotStrike2D attribute)

 	rotate() (mtpy.analysis.pt.PhaseTensor method)

 	(mtpy.analysis.zinvariants.Zinvariants method)

 	(mtpy.core.z.Tipper method)

 	(mtpy.core.z.Z method)

 	rotate_mesh() (in module mtpy.utils.mesh_tools)

 	rotate_stations() (mtpy.modeling.modem.Stations method)

 	rotation_angle (mtpy.core.mt.MT attribute)

 	(mtpy.modeling.modem.Data attribute)

 	(mtpy.utils.shapefiles.PTShapeFile attribute)

 	(mtpy.utils.shapefiles.TipperShapeFile attribute)

 	Run (class in mtpy.modeling.occam1d)

 	(class in mtpy.modeling.occam2d_rewrite)

S

 	
 	sampling_rate (mtpy.core.ts.MT_TS attribute)

 	save_figure() (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps method)

 	(mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	(mtpy.modeling.modem.PlotRMSMaps method)

 	(mtpy.modeling.modem.PlotResponse method)

 	(mtpy.modeling.modem.PlotSlices method)

 	(mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	(mtpy.modeling.modem.plot_response.PlotResponse method)

 	(mtpy.modeling.modem.plot_rms_maps.PlotRMSMaps method)

 	(mtpy.modeling.modem.plot_slices.PlotSlices method)

 	(mtpy.modeling.occam1d.Plot1DResponse method)

 	(mtpy.modeling.occam1d.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotMisfitPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotModel method)

 	(mtpy.modeling.occam2d_rewrite.PlotPseudoSection method)

 	(mtpy.modeling.winglink.PlotMisfitPseudoSection method)

 	(mtpy.modeling.winglink.PlotPseudoSection method)

 	(mtpy.modeling.ws3dinv.PlotPTMaps method)

 	(mtpy.modeling.ws3dinv.PlotResponse method)

 	(mtpy.modeling.ws3dinv.PlotSlices method)

 	save_figure2() (mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	save_figures() (mtpy.modeling.occam2d_rewrite.PlotResponse method)

 	(mtpy.modeling.winglink.PlotResponse method)

 	save_plot() (mtpy.imaging.plot_mt_response.PlotMTResponse method)

 	(mtpy.imaging.plotresponse.PlotResponse method)

 	(mtpy.imaging.plotstrike.PlotStrike method)

 	(mtpy.imaging.plotstrike2d.PlotStrike2D method)

 	
 	select_periods() (mtpy.core.edi_collection.EdiCollection method)

 	set_amp_phase() (mtpy.core.z.Tipper method)

 	set_freq() (mtpy.analysis.zinvariants.Zinvariants method)

 	set_mag_direction() (mtpy.core.z.Tipper method)

 	set_res_list() (mtpy.modeling.modem.ModelManipulator method)

 	(mtpy.modeling.ws3dinv.WSModelManipulator method)

 	set_res_phase() (mtpy.core.z.ResPhase method)

 	set_rpt() (mtpy.analysis.pt.ResidualPhaseTensor method)

 	set_rpt_err() (mtpy.analysis.pt.ResidualPhaseTensor method)

 	set_z() (mtpy.analysis.zinvariants.Zinvariants method)

 	set_z_err() (mtpy.analysis.zinvariants.Zinvariants method)

 	set_z_object() (mtpy.analysis.pt.PhaseTensor method)

 	ShapeFilesCreator (class in mtpy.utils.shapefiles_creator)

 	show_obj() (mtpy.core.edi_collection.EdiCollection method)

 	Site (class in mtpy.core.mt)

 	skew (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.z.Z attribute)

 	skew_err (mtpy.core.z.Z attribute)

 	Software (class in mtpy.core.mt)

 	Spectra (class in mtpy.core.ts)

 	start_time_epoch_sec (mtpy.core.ts.MT_TS attribute)

 	start_time_utc (mtpy.core.ts.MT_TS attribute)

 	Startup (class in mtpy.modeling.occam1d)

 	(class in mtpy.modeling.occam2d_rewrite)

 	station (mtpy.core.edi.Edi attribute)

 	(mtpy.core.mt.MT attribute)

 	station_locations (mtpy.modeling.modem.Data attribute)

 	Stations (class in mtpy.modeling.modem)

 	strike_angle() (in module mtpy.analysis.geometry)

T

 	
 	Tipper (class in mtpy.core.z)

 	(mtpy.core.mt.MT attribute)

 	(mtpy.core.mt_xml.MT_XML attribute)

 	TipperShapeFile (class in mtpy.utils.shapefiles)

 	
 	trace (mtpy.analysis.pt.PhaseTensor attribute)

 	(mtpy.core.z.Z attribute)

 	trace_err (mtpy.core.z.Z attribute)

 	TS (module)

U

 	
 	update_inputs() (in module mtpy.modeling.occam1d)

 	update_plot() (mtpy.imaging.phase_tensor_maps.PlotPhaseTensorMaps method)

 	(mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	(mtpy.imaging.plot_mt_response.PlotMTResponse method)

 	(mtpy.imaging.plotnresponses.PlotMultipleResponses method)

 	(mtpy.imaging.plotresponse.PlotResponse method)

 	(mtpy.imaging.plotstrike.PlotStrike method)

 	(mtpy.imaging.plotstrike2d.PlotStrike2D method)

 	(mtpy.modeling.occam1d.Plot1DResponse method)

 	(mtpy.modeling.occam1d.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotL2 method)

 	(mtpy.modeling.occam2d_rewrite.PlotMisfitPseudoSection method)

 	(mtpy.modeling.occam2d_rewrite.PlotModel method)

 	(mtpy.modeling.occam2d_rewrite.PlotPseudoSection method)

 	(mtpy.modeling.winglink.PlotMisfitPseudoSection method)

 	(mtpy.modeling.winglink.PlotPseudoSection method)

 	(mtpy.modeling.ws3dinv.PlotDepthSlice method)

 	(mtpy.modeling.ws3dinv.PlotResponse method)

 	
 	utm_to_ll() (in module mtpy.utils.gis_tools)

 	utm_wgs84_conv() (in module mtpy.utils.gis_tools)

 	utm_zone (mtpy.core.mt.MT attribute)

 	utm_zone_to_epsg() (in module mtpy.utils.gis_tools)

W

 	
 	welch_method() (mtpy.core.ts.Spectra method)

 	WLInputError

 	write_ascii_file() (mtpy.core.ts.MT_TS method)

 	write_cfg_file() (mtpy.core.mt.MT method)

 	(mtpy.core.mt_xml.XML_Config method)

 	write_config_file() (mtpy.modeling.modem.ModEMConfig method)

 	write_control_file() (mtpy.modeling.modem.ControlFwd method)

 	(mtpy.modeling.modem.ControlInv method)

 	write_cov_vtk_file() (mtpy.modeling.modem.Covariance method)

 	write_covariance_file() (mtpy.modeling.modem.Covariance method)

 	write_data_file() (mtpy.modeling.modem.Data method)

 	(mtpy.modeling.occam1d.Data method)

 	(mtpy.modeling.occam2d_rewrite.Data method)

 	(mtpy.modeling.ws3dinv.WSData method)

 	write_data_pt_shape_files_modem() (mtpy.utils.shapefiles.PTShapeFile method)

 	write_data_sect() (mtpy.core.edi.DataSection method)

 	write_define_measurement() (mtpy.core.edi.DefineMeasurement method)

 	write_edi_file() (mtpy.core.edi.Edi method)

 	write_gocad_sgrid_file() (mtpy.modeling.modem.Model method)

 	write_hdf5() (mtpy.core.ts.MT_TS method)

 	write_header() (mtpy.core.edi.Header method)

 	write_imag_shape_files() (mtpy.utils.shapefiles.TipperShapeFile method)

 	write_info() (mtpy.core.edi.Information method)

 	write_initial_file() (mtpy.modeling.ws3dinv.WSMesh method)

 	write_iter_file() (mtpy.modeling.occam2d_rewrite.Model method)

 	write_mesh_file() (mtpy.modeling.occam2d_rewrite.Mesh method)

 	write_model_file() (mtpy.modeling.modem.Model method)

 	(mtpy.modeling.occam1d.Model method)

 	write_mt_file() (mtpy.core.mt.MT method)

 	write_pt_data_to_gmt() (mtpy.modeling.modem.phase_tensor_maps.PlotPTMaps method)

 	write_real_shape_files() (mtpy.utils.shapefiles.TipperShapeFile method)

 	
 	write_regularization_file() (mtpy.modeling.occam2d_rewrite.Regularization method)

 	write_residual_pt_shape_files_modem() (mtpy.utils.shapefiles.PTShapeFile method)

 	write_resp_pt_shape_files_modem() (mtpy.utils.shapefiles.PTShapeFile method)

 	write_rms_to_file() (mtpy.modeling.modem.Residual method)

 	write_shape_files() (mtpy.utils.shapefiles.PTShapeFile method)

 	write_startup_file() (mtpy.modeling.occam1d.Startup method)

 	(mtpy.modeling.occam2d_rewrite.Startup method)

 	(mtpy.modeling.ws3dinv.WSStartup method)

 	write_station_file() (mtpy.modeling.ws3dinv.WSStation method)

 	write_tip_shape_files_modem() (mtpy.utils.shapefiles.TipperShapeFile method)

 	write_tip_shape_files_modem_residual() (mtpy.utils.shapefiles.TipperShapeFile method)

 	write_vtk_file() (mtpy.modeling.modem.Model method)

 	(mtpy.modeling.ws3dinv.WSModel method)

 	(mtpy.modeling.ws3dinv.WSStation method)

 	write_vtk_files() (in module mtpy.modeling.ws3dinv)

 	write_vtk_res_model() (in module mtpy.modeling.ws3dinv)

 	write_vtk_station_file() (mtpy.modeling.modem.Data method)

 	write_vtk_stations() (in module mtpy.modeling.ws3dinv)

 	write_xml_file() (mtpy.core.mt_xml.MT_XML method)

 	write_xyres() (mtpy.modeling.modem.Model method)

 	writeTextFiles() (mtpy.imaging.phase_tensor_pseudosection.PlotPhaseTensorPseudoSection method)

 	(mtpy.imaging.plotstrike.PlotStrike method)

 	(mtpy.imaging.plotstrike2d.PlotStrike2D method)

 	WSData (class in mtpy.modeling.ws3dinv)

 	WSInputError

 	WSMesh (class in mtpy.modeling.ws3dinv)

 	WSModel (class in mtpy.modeling.ws3dinv)

 	WSModelManipulator (class in mtpy.modeling.ws3dinv)

 	WSResponse (class in mtpy.modeling.ws3dinv)

 	WSStartup (class in mtpy.modeling.ws3dinv)

 	WSStation (class in mtpy.modeling.ws3dinv)

X

 	
 	XML_Config (class in mtpy.core.mt_xml)

 	
 	XML_element (class in mtpy.core.mt_xml)

Z

 	
 	Z (class in mtpy.core.z)

 	(module)

 	(mtpy.core.mt.MT attribute)

 	(mtpy.core.mt_xml.MT_XML attribute)

 	
 	z (mtpy.core.z.Z attribute)

 	z2pt() (in module mtpy.analysis.pt)

 	z_object2pt() (in module mtpy.analysis.pt)

 	ZComponentError

 	Zinvariants (class in mtpy.analysis.zinvariants)

 Welcome to MTpy’s documentation!

Welcome to MTpy’s documentation!

Contents:

	Package Core
	Module z

	Module TS

	Module MT

	Module EDI

	Module EDI_Collection

	Module XML

	Module JFile

	Package Analysis
	Module Distortion

	Module Geometry

	Module Phase Tensor

	Module Static Shift

	Module Z Invariants

	Package Modeling
	Module ModEM

	Module Occam 1D

	Module Occam 2D

	Module Winglink

	Module WS3DINV

	Package Imaging
	Penetration Depth

	Module Plot Phase Tensor Maps

	Module PlotPhaseTensorPseudoSection

	Module MTPlot

	Plot MT Response

	Visualization of Models

	Package utils
	Shapefile Creator

	GIS Tools

	Other Tools

Indices and tables

	Index

	Module Index

	Search Page

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to MTpy’s documentation!

 		
 Package Core

 		
 Module z

 		
 Module TS

 		
 Module MT

 		
 Module EDI

 		
 Module EDI_Collection

 		
 Module XML

 		
 Module JFile

 		
 Package Analysis

 		
 Module Distortion

 		
 Module Geometry

 		
 Module Phase Tensor

 		
 Module Static Shift

 		
 Module Z Invariants

 		
 Package Modeling

 		
 Module ModEM

 		
 Module Occam 1D

 		
 Module Occam 2D

 		
 Module Winglink

 		
 Module WS3DINV

 		
 Package Imaging

 		
 Penetration Depth

 		
 Module Plot Phase Tensor Maps

 		
 Module PlotPhaseTensorPseudoSection

 		
 Module MTPlot

 		
 Plot MT Response

 		
 plot_mt_response

 		
 Visualization of Models

 		
 Package utils

 		
 Shapefile Creator

 		
 GIS Tools

 		
 Other Tools
